def model(cfg, data, label): w = gen_symbols(IsingPoly, cfg.dataset.features, cfg.model.length_weight) f = forward(data, label, w, cfg) q_result = decode_solution(w, solve_model(f)) q_result = np.vectorize(is_int)(q_result) return q_result
def by_amplify(qubits, model, token, timeout=5000): client = FixstarsClient() client.token = token client.parameters.timeout = timeout solver = Solver(client) solver.filter_solution = False result = solver.solve(model) values = result[0].values q_values = decode_solution(qubits, values, 1) return np.where(np.array(q_values) == 1)[1]
def solve(self): q = gen_symbols(BinaryPoly, *self.board.get_size(), len(self.pieces), 8) # 制約(a) 重複する置き方のピースは除外する for y in range(self.board.get_size()[0]): for x in range(self.board.get_size()[1]): for i in range(len(self.pieces)): for j in range(self.pieces[i].placement_count, 8): q[y][x][i][j] = BinaryPoly(0) # 制約(b) ピースはボードから外に出ない for y in range(self.board.get_size()[0]): for x in range(self.board.get_size()[1]): for i in range(len(self.pieces)): for j in range(self.pieces[i].placement_count): if len(self.pieces[i].get_blocks(j, (x, y)) - self.board.get_blocks()) > 0: q[y][x][i][j] = BinaryPoly(0) # 制約(c) ピース同士は重ならずボードを全て埋める s = dict() for b in self.board.get_blocks(): s[b] = BinaryPoly() for y in range(self.board.get_size()[0]): for x in range(self.board.get_size()[1]): for i in range(len(self.pieces)): for j in range(self.pieces[i].placement_count): for p in self.pieces[i].get_blocks( j, (x, y)) & self.board.get_blocks(): s[p] += q[y][x][i][j] board_constraints = [equal_to(q, 1) for q in s.values()] # 制約(d) 全てのピースは一度ずつ使われる piece_constraints = [ equal_to( sum(q[y][x][i][j] for y in range(self.board.get_size()[0]) for x in range(self.board.get_size()[1]) for j in range(8)), 1) for i in range(len(self.pieces)) ] constraints = (sum(board_constraints) + sum(piece_constraints)) solver = Solver(self.client) model = BinaryQuadraticModel(constraints) result = solver.solve(model) if len(result) == 0: raise RuntimeError("Any one of constaraints is not satisfied.") solution = result[0] values = solution.values q_values = decode_solution(q, values) Visualizer().visualize(self.pieces, self.board, q_values)
def solve(self, c_weight: float = 3, timeout: int = 1000, num_unit_step: int = 10) -> Setlist: """ Args: c_weight (float): 時間制約の強さ timeout (int, optional): Fixstars AE のタイムアウト[ms] (デフォルト: 10000) num_unit_step (int, optional): Fixstars AE のステップ数 (デフォルト: 10) Returns: Setlist: セットリスト """ self.q = gen_symbols(BinaryPoly, self.num_tracks) energy_function = self.energy(c_weight) model = BinaryQuadraticModel(energy_function) fixstars_client = FixstarsClient() fixstars_client.token = os.environ.get("FIXSTARS_API_TOKEN") fixstars_client.parameters.timeout = timeout fixstars_client.parameters.num_unit_steps = num_unit_step amplify_solver = Solver(fixstars_client) amplify_solver.filter_solution = False result = amplify_solver.solve(model) q_values = decode_solution(self.q, result[0].values) tracks = [self.candidates[i] for i, v in enumerate(q_values) if v == 1] total_time = 0 user_scores = np.zeros(self.num_users) for track in tracks: user_scores += np.array(track.p) total_time += track.duration_ms return Setlist(tracks=tracks, scores=user_scores.tolist(), score_sum=user_scores.sum(), score_avg=user_scores.mean(), score_var=user_scores.var(), total_time=total_time)
# ソルバーの構築 solver = Solver(client) # 問題を入力してマシンを実行 result = solver.solve(f) # 解が得られなかった場合、len(result) == 0 if len(result) == 0: raise RuntimeError("No solution was found") print("Number of results = ",len(result)) energy = result[0].energy values = result[0].values partitions = set() for sol in result: solution = decode_solution(s, sol.values) A0 = tuple(sorted([A[idx] for idx, val in enumerate(solution) if val != 1])) A1 = tuple(sorted([A[idx] for idx, val in enumerate(solution) if val == 1])) # 同じ分割がすでにリストに含まれていない場合 if (A1, A0) not in partitions: partitions.add((A0, A1)) for p in partitions: print(f"sum = {sum(p[0])}, {sum(p[1])}, partition: {p}")
equal_to(sum_poly([q[i][c] for c in range(num_colors)]), 1) for i in range(num_region) ] # 隣接する領域間の制約 adj_constraints = [ # 都道府県コードと配列インデックスは1ずれてるので注意 penalty(q[i][c] * q[j - 1][c]) for i in range(num_region) for j in jm.adjacent(i + 1) # j: 隣接している都道府県コード if i + 1 < j for c in range(num_colors) ] constraints = sum(reg_constraints) + sum(adj_constraints) model = BinaryQuadraticModel(constraints) result = solver.solve(model) if len(result) == 0: raise RuntimeError("Any one of constraints is not satisfied.") values = result[0].values q_values = decode_solution(q, values, 1) color_indices = np.where(np.array(q_values) == 1)[1] color_map = { jm.pref_names[i + 1]: colors[color_indices[i]] for i in range(len(color_indices)) } plt.rcParams["figure.figsize"] = 6, 6 plt.imshow(jm.picture(color_map)) plt.show()
def quantum_solver_approx(N, M, query): # solve with Amplify (approximate version) q = gen_symbols(BinaryPoly, M, N, N) # represent the solution ########## constraints ########## # each layer doesn't have 2+ same values one_hot_constraints_layer = [ # m -> layer # n -> qubit # v -> value of qubit equal_to(sum(q[m][n][v] for n in range(N)), 1) for m in range(M) for v in range(N) ] # each qubit doesn't have 2+ values one_hot_constraints_num = [ # m -> layer # n -> qubit # v -> value of qubit equal_to(sum(q[m][n][v] for v in range(N)), 1) for m in range(M) for n in range(N) ] # every CX gate must be applied for 2 adjacent qubits CXgate_constraints = [] for m in range(M): for g0 in range(0, len(query[m]), 2): v0, v1 = query[m][g0], query[m][g0 + 1] # v0 and v1 must be adjacent each other for i in range(N): for j in range(i + 2, N): CXgate_constraints.append( penalty(q[m][i][v0] * q[m][j][v1])) CXgate_constraints.append( penalty(q[m][i][v1] * q[m][j][v0])) constraints = (sum(one_hot_constraints_layer) + sum(one_hot_constraints_num) + sum(CXgate_constraints)) cost = sum_poly( M - 1, lambda m: sum_poly( N, lambda i: sum_poly( N, lambda j: sum_poly(N, lambda v: q[m][i][v] * q[m + 1][j][v]) * ((N - 1) * (i + j) - 2 * i * j) / N))) ########## solve ########## solver = Solver(client) model = BinaryQuadraticModel(constraints * constraintWeight + cost) result = solver.solve(model) if len(result) == 0: raise RuntimeError("Any one of constraints is not satisfied.") values = result[0].values q_values = decode_solution(q, values, 1) # print(q_values_main) ########## decode the result into string ########## ans = [[-1 for n in range(N)] for m in range(M)] for m in range(M): for n in range(N): for v in range(N): if (q_values[m][n][v] > 0.5): ans[m][n] = v cost = 0 for m in range(M - 1): cost += calcCost(ans[m], ans[m + 1]) return cost, ans
def quantum_solver_strict(N, M, query): # solve by Amplify (strict version) q_all = gen_symbols(BinaryPoly, M * N * N + (M - 1) * N * N * N + (M - 1) * N * N) q = q_all[:M * N * N] # represent the solution q_sub = q_all[M * N * N:M * N * N + (M - 1) * N * N * N] # q_sub[m][i][j][v] = q[m][i][v] * q[m+1][j][v] q_C_matrix = q_all[ M * N * N + (M - 1) * N * N * N:] # q_C_matrix[m][i][j] = sum(q_sub[m][i][j][v] for v) ########## constraints ########## # each layer doesn't have 2+ same values one_hot_constraints_layer = [ # m -> layer # n -> physical qubit # v -> logical qubit equal_to(sum(q[(m * N + n) * N + v] for n in range(N)), 1) for m in range(M) for v in range(N) ] # each qubit doesn't have 2+ values one_hot_constraints_num = [ # m -> layer # n -> physical qubit # v -> logical qubit equal_to(sum(q[(m * N + n) * N + v] for v in range(N)), 1) for m in range(M) for n in range(N) ] # every CX gate must be applied for 2 adjacent qubits CXgate_constraints = [] for m in range(M): for g0 in range(0, len(query[m]), 2): v0, v1 = query[m][g0], query[m][g0 + 1] # v0 and v1 must be adjacent each other for i in range(N): for j in range(i + 2, N): CXgate_constraints.append( penalty(q[(m * N + i) * N + v0] * q[(m * N + j) * N + v1])) CXgate_constraints.append( penalty(q[(m * N + i) * N + v1] * q[(m * N + j) * N + v0])) # q_sub[m][i][j][v] = q[m][i][v] * q[m+1][j][v] sub_gate_constraints = [] for _idx in range((M - 1) * N**3): idx = _idx m = idx // (N**3) idx %= N**3 i = idx // (N**2) idx %= N**2 j = idx // N idx %= N v = idx sub_gate_constraints.append( penalty(3 * q_sub[((m * N + i) * N + j) * N + v] + q[(m * N + i) * N + v] * q[((m + 1) * N + j) * N + v] - 2 * q_sub[((m * N + i) * N + j) * N + v] * (q[(m * N + i) * N + v] + q[((m + 1) * N + j) * N + v]))) # q_C_matrix[m][i][j] = sum(q_sub[m][i][j][v] for v) C_matrix_sum_constraints = [] for _idx in range((M - 1) * N**2): idx = _idx m = idx // (N**2) idx %= N**2 i = idx // N idx %= N j = idx C_matrix_sum_constraints.append( equal_to( q_C_matrix[(m * N + i) * N + j] - sum(q_sub[((m * N + i) * N + j) * N + v] for v in range(N)), 0)) constraints = (sum(one_hot_constraints_layer) + sum(one_hot_constraints_num) + sum(CXgate_constraints) + sum(sub_gate_constraints) + sum(C_matrix_sum_constraints)) cost = [] for m in range(M - 1): for i1 in range(N): for j1 in range(i1): # i1 > j1 for i2 in range(N): for j2 in range(i2 + 1, N): # i2 < j2 cost.append(q_C_matrix[(m * N + i1) * N + j1] * q_C_matrix[(m * N + i2) * N + j2]) for j1 in range(i1 + 1, N): # i1 < j1 for i2 in range(N): for j2 in range(i2): # i2 > j2 cost.append(q_C_matrix[(m * N + i1) * N + j1] * q_C_matrix[(m * N + i2) * N + j2]) # print(constraints) # print(cost) ########## solve ########## solver = Solver(client) model = BinaryQuadraticModel(constraints * constraintWeight + sum(cost)) result = solver.solve(model) if len(result) == 0: raise RuntimeError("Any one of constraints is not satisfied.") values = result[0].values q_values = decode_solution(q_all, values, 1) # print(q_values_main) ########## decode the result into string ########## ans = [[-1 for n in range(N)] for m in range(M)] for m in range(M): for n in range(N): for v in range(N): if (q_values[(m * N + n) * N + v] > 0.5): ans[m][n] = v cost = 0 for m in range(M - 1): cost += calcCost(ans[m], ans[m + 1]) return cost, ans
def visualize_solution(x, values): # execute decoding x_sol = decode_solution(x, values, 1) print(x_sol)
def find_feasible_solution(self): """find a feasible locations with makespan, found -> set self.used_edges """ # create variables q = [] index = 0 for t in range(self.makespan): q.append([]) for v in range(self.field["size"]): l = len(self.field["adj"][v])+1 # +1 -> stay at the current location q[-1].append( amplify.gen_symbols( amplify.BinaryPoly, index, (1, l) ) ) index += l # set starts constraints_starts = [ equal_to(sum_poly( q[0][v][0] ), 1) # q[timestep][node][0] for v in self.instance["starts"] ] for v in range(self.field["size"]): if v in self.instance["starts"]: continue # other locations for i in range(len(q[0][v][0])): q[0][v][0][i] = amplify.BinaryPoly(0) # set goals constraints_goals = [ equal_to(sum_poly([ q[-1][u][0][ self.field["adj"][u].index(v) ] for u in self.field["adj"][v] ] + [ q[-1][v][0][ len(self.field["adj"][v]) ] ]), 1) for v in self.instance["goals"] ] for v in range(self.field["size"]): # other locations for i in range(len(self.field["adj"][v])): if self.field["adj"][v][i] not in self.instance["goals"]: q[-1][v][0][i] = amplify.BinaryPoly(0) if v not in self.instance["goals"]: q[-1][v][0][-1] = amplify.BinaryPoly(0) # upper bound, in constraints_in = [ less_equal(sum_poly([ q[t][u][0][ self.field["adj"][u].index(v) ] for u in self.field["adj"][v] ] + [ q[t][v][0][ len(self.field["adj"][v]) ] ]), 1) for v, t in product(range(self.field["size"]), range(0, self.makespan-1)) ] # upper bound, out constraints_out = [ less_equal(sum_poly( q[t][v][0] ), 1) for v, t in product(range(self.field["size"]), range(1, self.makespan)) ] # continuity constraints_continuity = [ equal_to(sum_poly([ q[t][u][0][ self.field["adj"][u].index(v) ] for u in self.field["adj"][v] ] + [ q[t][v][0][ len(self.field["adj"][v]) ] ]) - sum_poly( q[t+1][v][0] ), 0) for v, t in product(range(self.field["size"]), range(0, self.makespan-1)) ] # branching for v in range(self.field["size"]): if not self.field["body"][v]: continue # unreachable vertexes from starts for t in range(0, min(self.DIST_TABLE_FROM_STARTS[v], self.makespan)): for i in range(len(q[t][v][0])): q[t][v][0][i] = amplify.BinaryPoly(0) # unreachable vertexes to goals for t in range(max(self.makespan - self.DIST_TABLE_FROM_GOALS[v] + 1, 0), self.makespan): for i in range(len(q[t][v][0])): q[t][v][0][i] = amplify.BinaryPoly(0) # set occupied vertex for v in range(self.field["size"]): if self.field["body"][v]: continue for t in range(0, self.makespan): q[t][v][0][-1] = amplify.BinaryPoly(0) # create model model = sum(constraints_starts) model += sum(constraints_goals) if len(constraints_in) > 0: model += sum(constraints_in) if len(constraints_out) > 0: model += sum(constraints_out) if len(constraints_continuity) > 0: model += sum(constraints_continuity) # setup client client = FixstarsClient() client.token = os.environ['TOKEN'] client.parameters.timeout = self.timeout # solve solver = amplify.Solver(client) result = solver.solve(model) if len(result) > 0: self.used_edges = amplify.decode_solution(q, result[0].values)
client = FixstarsClient() client.parameters.timeout = 1000 # タイムアウト1秒 # client.token = "xxxxxxxxxxxxxxxxxxxxxxxxxx" # アカウントトークンに置換 client.parameters.outputs.duplicate = False # 同じエネルギー値の解を列挙しない solver = Solver(client) result = solver.solve(f) # 解が得られなかった場合、len(result) == 0 if len(result) == 0: raise RuntimeError("No solution was found") energy = result[0].energy values = result[0].values solution = decode_solution(q, values) # 注文する料理リスト ORDER_GRAND_MENUS = [] # 注文する料理の価格合計 SUM_ORDER_GRAND_MENU_PRICES = 0 # 注文する料理のカロリー合計 SUM_ORDER_GRAND_MENU_CALORIES = 0 for i in range(len(solution)): if solution[i] == 1: ORDER_GRAND_MENUS.append(GRAND_MENU[i]) SUM_ORDER_GRAND_MENU_PRICES += GRAND_MENU[i]["price"] SUM_ORDER_GRAND_MENU_CALORIES += GRAND_MENU[i]["calorie"]
#!/usr/bin/env python3 from amplify import decode_solution import make_hamiltonian as mh import make_instance as mi import solve_problem as sp import visualize_solution as vs if __name__ == '__main__': # get instance information type_matrix, weak_matrix, resist_matrix, enemies, num_party, feed_dict = mi.make_instance( ) # set hamiltonian for model x, model = mh.make_hamiltonian(type_matrix=type_matrix, weak_matrix=weak_matrix, resist_matrix=resist_matrix, enemies=enemies, num_party=num_party, feed_dict=feed_dict) # solve with amplify obj, values, broken = sp.solve_problem(model=model) # execute decoding x_sol = decode_solution(x, values) # visualize solution print('***** Enemies *****') vs.visualize_solution(sol=enemies) print('***** My party *****') vs.visualize_solution(sol=x_sol)