Beispiel #1
0
    def evolve_model(self):
        convert_nbody = nbody_system.nbody_to_si(
            1.0 | units.MSun, 149.5e6 | units.km)

        hermite = Hermite(convert_nbody)
        hermite.initialize_code()

        hermite.parameters.epsilon_squared = 0.0 | units.AU**2

        stars = self.new_system_of_sun_and_earth()
        earth = stars[1]
        sun = stars[0]
        Earth = blender.Primitives.sphere(10, 10, 0.1)  # Make the earth avatar
        Sun = blender.Primitives.sphere(32, 32, 1)  # Make the sun avatar
        hermite.particles.add_particles(stars)

        for i in range(1*365):
            hermite.evolve_model(i | units.day)
            hermite.particles.copy_values_of_all_attributes_to(stars)
            # update avatar positions:
            Earth.loc = (
                    1*earth.position.value_in(units.AU)[0],
                    1*earth.position.value_in(units.AU)[1],
                    earth.position.value_in(units.AU)[2])
            Sun.loc = (
                    1*sun.position.value_in(units.AU)[0],
                    1*sun.position.value_in(units.AU)[1],
                    sun.position.value_in(units.AU)[2])
            blender.Redraw()

        hermite.print_refs()
        hermite.stop()
Beispiel #2
0
    def evolve_model(self):
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun,
                                                 149.5e6 | units.km)

        hermite = Hermite(convert_nbody)
        hermite.initialize_code()

        hermite.parameters.epsilon_squared = 0.0 | units.AU**2

        stars = self.new_system_of_sun_and_earth()
        earth = stars[1]
        sun = stars[0]
        Earth = blender.Primitives.sphere(10, 10, 0.1)  # Make the earth avatar
        Sun = blender.Primitives.sphere(32, 32, 1)  # Make the sun avatar
        hermite.particles.add_particles(stars)

        for i in range(1 * 365):
            hermite.evolve_model(i | units.day)
            hermite.particles.copy_values_of_all_attributes_to(stars)
            # update avatar positions:
            Earth.loc = (1 * earth.position.value_in(units.AU)[0],
                         1 * earth.position.value_in(units.AU)[1],
                         earth.position.value_in(units.AU)[2])
            Sun.loc = (1 * sun.position.value_in(units.AU)[0],
                       1 * sun.position.value_in(units.AU)[1],
                       sun.position.value_in(units.AU)[2])
            blender.Redraw()

        hermite.print_refs()
        hermite.stop()
Beispiel #3
0
    def test12(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0, 1.00] | nbody_system.length
        particles.y = [0.0, 0.0] | nbody_system.length
        particles.z = [0.0, 0.0] | nbody_system.length
        particles.radius = 0.005 | nbody_system.length
        particles.vx = [5.1, 0.0] | nbody_system.speed
        particles.vy = [0.0, 0.0] | nbody_system.speed
        particles.vz = [0.0, 0.0] | nbody_system.speed
        particles.mass = [0.1, 0.1] | nbody_system.mass

        instance = Hermite()
        instance.initialize_code()
        instance.parameters.stopping_conditions_out_of_box_size = .5 | nbody_system.length
        self.assertEquals(
            instance.parameters.stopping_conditions_out_of_box_size,
            .5 | nbody_system.length)
        instance.particles.add_particles(particles)
        instance.stopping_conditions.out_of_box_detection.enable()
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertTrue(
            instance.stopping_conditions.out_of_box_detection.is_set())
        self.assertAlmostEqual(
            instance.stopping_conditions.out_of_box_detection.particles(0).x,
            1.0 | nbody_system.length, 3)
        instance.stop()
Beispiel #4
0
    def test18(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,1.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        instance.parameters.end_time_accuracy_factor = 1.0
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.10563767746 |nbody_system.time, 5)
        instance.parameters.end_time_accuracy_factor = -1.0
        instance.evolve_model(0.3 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.266758127609 |nbody_system.time, 5)
        instance.parameters.end_time_accuracy_factor = 0.0
        instance.evolve_model(0.4 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.4 |nbody_system.time, 6)
        instance.parameters.end_time_accuracy_factor = -0.5
        instance.evolve_model(0.5 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.48974930698 |nbody_system.time, 6)
        instance.parameters.end_time_accuracy_factor = +0.5
        instance.evolve_model(0.6 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.6042733579 |nbody_system.time, 6)
        
        instance.stop()
Beispiel #5
0
def simulate_system_until(particles, end_time):
    convert_nbody = nbody_system.nbody_to_si(
        1.0 | units.MSun, 149.5e6 | units.km)

    instance = Hermite(convert_nbody)
    instance.parameters.epsilon_squared = 0.0 | units.AU**2
    instance.particles.add_particles(particles)

    t0 = 0 | units.day
    dt = 10 | units.day
    t = t0
    earth = instance.particles[1]

    x_values = quantities.AdaptingVectorQuantity()
    y_values = quantities.AdaptingVectorQuantity()

    while t < end_time:
        instance.evolve_model(t)

        x_values.append(earth.x)
        y_values.append(earth.y)

        t += dt

    instance.stop()

    return x_values, y_values
Beispiel #6
0
    def test13(self):
        particles = plummer.new_plummer_model(31)

        instance = Hermite(number_of_workers=1)  #, debugger="xterm")
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.01 | nbody_system.length**2
        instance.particles.add_particles(particles)

        instance.evolve_model(0.1 | nbody_system.time)
        instance.synchronize_model()
        expected_positions = instance.particles.position
        instance.stop()
        positions_per_workers = []
        for n in [2, 3, 4, 5]:
            instance = Hermite(number_of_workers=n)
            instance.initialize_code()
            instance.parameters.epsilon_squared = 0.01 | nbody_system.length**2
            instance.particles.add_particles(particles)

            instance.evolve_model(0.1 | nbody_system.time)
            instance.synchronize_model()
            positions_per_workers.append(instance.particles.position)
            instance.stop()

        for index, n in enumerate([2, 3, 4, 5]):
            self.assertAlmostEqual(expected_positions,
                                   positions_per_workers[index], 15)
def evolve_system(particles):
    """
    Evolves the system using the Hermite integrator.


    Parameters
    ----------
    particles: amuse.datamodel.particles.Particles instance

    """
    times = numpy.linspace(0.0001, args.time, args.steps) |u.yr

    intr = Hermite(nbody_to_si(particles.total_mass(), 1 | u.AU))
    intr.particles.add_particles(particles)

    energy_begin = intr.get_total_energy()

    if args.dt is not None:
        intr.set_dt_param(args.dt)

    for t in times:
        intr.evolve_model(t)
        energy_error = (intr.get_total_energy() - energy_begin)/energy_begin
        print(intr.get_time_step().in_(u.day), intr.get_time().in_(u.yr))
        print(energy_error)
      

    print("energy error:{}".format(energy_error))

    intr.stop()
Beispiel #8
0
def simulate_small_cluster(number_of_stars=1000,
                           end_time=40 | nbody_system.time,
                           number_of_workers=1):
    particles = new_plummer_model(number_of_stars)
    particles.scale_to_standard()

    gravity = Hermite(number_of_workers=number_of_workers)
    gravity.parameters.epsilon_squared = 0.15 | nbody_system.length**2

    gravity.particles.add_particles(particles)

    from_gravity_to_model = gravity.particles.new_channel_to(particles)

    time = 0.0 * end_time
    total_energy_at_t0 = gravity.kinetic_energy + gravity.potential_energy

    positions_at_different_times = []
    positions_at_different_times.append(particles.position)
    times = []
    times.append(time)

    print("evolving the model until t = " + str(end_time))
    while time < end_time:
        time += end_time / 3.0

        gravity.evolve_model(time)
        from_gravity_to_model.copy()

        positions_at_different_times.append(particles.position)
        times.append(time)
        print_log(time, gravity, particles, total_energy_at_t0)

    gravity.stop()

    return times, positions_at_different_times
Beispiel #9
0
def evolve_system(particles):
    """
    Evolves the system using the Hermite integrator.


    Parameters
    ----------
    particles: amuse.datamodel.particles.Particles instance

    """
    times = numpy.linspace(0.0001, args.time, args.steps) | u.yr

    intr = Hermite(nbody_to_si(particles.total_mass(), 1 | u.AU))
    intr.particles.add_particles(particles)

    energy_begin = intr.get_total_energy()

    if args.dt is not None:
        intr.set_dt_param(args.dt)

    for t in times:
        intr.evolve_model(t)
        energy_error = (intr.get_total_energy() - energy_begin) / energy_begin
        print(intr.get_time_step().in_(u.day), intr.get_time().in_(u.yr))
        print(energy_error)

    print("energy error:{}".format(energy_error))

    intr.stop()
Beispiel #10
0
    def test3(self):
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)

        instance = Hermite(convert_nbody)
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.00001 | units.AU**2
        instance.dt_dia = 5000
        
        stars = datamodel.Stars(2)
        star1 = stars[0]
        star2 = stars[1]

        star1.mass = units.MSun(1.0)
        star1.position = units.AU(numpy.array((-1.0,0.0,0.0)))
        star1.velocity = units.AUd(numpy.array((0.0,0.0,0.0)))
        star1.radius = units.RSun(1.0)

        star2.mass = units.MSun(1.0)
        star2.position = units.AU(numpy.array((1.0,0.0,0.0)))
        star2.velocity = units.AUd(numpy.array((0.0,0.0,0.0)))
        star2.radius = units.RSun(100.0)
        
        instance.particles.add_particles(stars)
    
        for x in range(1,2000,10):
            instance.evolve_model(x | units.day)
            instance.particles.copy_values_of_all_attributes_to(stars)
            stars.savepoint()
        
        instance.stop()
Beispiel #11
0
    def test3(self):
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun,
                                                 149.5e6 | units.km)

        instance = Hermite(convert_nbody)
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.00001 | units.AU**2
        instance.dt_dia = 5000

        stars = datamodel.Stars(2)
        star1 = stars[0]
        star2 = stars[1]

        star1.mass = units.MSun(1.0)
        star1.position = units.AU(numpy.array((-1.0, 0.0, 0.0)))
        star1.velocity = units.AUd(numpy.array((0.0, 0.0, 0.0)))
        star1.radius = units.RSun(1.0)

        star2.mass = units.MSun(1.0)
        star2.position = units.AU(numpy.array((1.0, 0.0, 0.0)))
        star2.velocity = units.AUd(numpy.array((0.0, 0.0, 0.0)))
        star2.radius = units.RSun(100.0)

        instance.particles.add_particles(stars)

        for x in range(1, 2000, 10):
            instance.evolve_model(x | units.day)
            instance.particles.copy_values_of_all_attributes_to(stars)
            stars.savepoint()

        instance.stop()
Beispiel #12
0
    def test18(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,1.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        instance.parameters.end_time_accuracy_factor = 1.0
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.10563767746 |nbody_system.time, 5)
        instance.parameters.end_time_accuracy_factor = -1.0
        instance.evolve_model(0.3 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.266758127609 |nbody_system.time, 5)
        instance.parameters.end_time_accuracy_factor = 0.0
        instance.evolve_model(0.4 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.4 |nbody_system.time, 6)
        instance.parameters.end_time_accuracy_factor = -0.5
        instance.evolve_model(0.5 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.48974930698 |nbody_system.time, 6)
        instance.parameters.end_time_accuracy_factor = +0.5
        instance.evolve_model(0.6 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.6042733579 |nbody_system.time, 6)
        
        instance.stop()
Beispiel #13
0
 def test13(self):
     particles = plummer.new_plummer_model(31)
    
     instance = Hermite(number_of_workers=1)#, debugger="xterm")
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.01 | nbody_system.length ** 2
     instance.particles.add_particles(particles)
     
     instance.evolve_model(0.1 | nbody_system.time)
     instance.synchronize_model()
     expected_positions = instance.particles.position
     instance.stop()
     positions_per_workers = []
     for n in [2,3,4,5]:
         instance = Hermite(number_of_workers=n)
         instance.initialize_code()
         instance.parameters.epsilon_squared = 0.01 | nbody_system.length ** 2
         instance.particles.add_particles(particles)
         
         instance.evolve_model(0.1 | nbody_system.time)
         instance.synchronize_model()
         positions_per_workers.append(instance.particles.position)
         instance.stop()
      
      
     for index, n in enumerate([2,3,4,5]):
         self.assertAlmostEqual(expected_positions, positions_per_workers[index], 15)
def simulate_system_until(particles, end_time):
    convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun,
                                             149.5e6 | units.km)

    instance = Hermite(convert_nbody)
    instance.parameters.epsilon_squared = 0.0 | units.AU**2
    instance.particles.add_particles(particles)

    t0 = 0 | units.day
    dt = 10 | units.day
    t = t0
    earth = instance.particles[1]

    x_values = quantities.AdaptingVectorQuantity()
    y_values = quantities.AdaptingVectorQuantity()

    while t < end_time:
        instance.evolve_model(t)

        x_values.append(earth.x)
        y_values.append(earth.y)

        t += dt

    instance.stop()

    return x_values, y_values
Beispiel #15
0
    def test22(self):
        hermite = Hermite()
        hermite.parameters.epsilon_squared = 0.0 | nbody_system.length**2

        particles = datamodel.Particles(2)
        particles.position = ([0, 0, 0], [1, 0, 0]) | nbody_system.length
        particles.velocity = ([-2, 0, 0], [2, 0, 0]) | nbody_system.speed
        particles.radius = 0 | nbody_system.length
        particles.mass = 0.1 | nbody_system.mass

        hermite.particles.add_particles(particles)
        hermite.stopping_conditions.out_of_box_detection.enable()
        hermite.parameters.stopping_conditions_out_of_box_size = 2 | nbody_system.length
        hermite.parameters.stopping_conditions_out_of_box_use_center_of_mass = False
        hermite.evolve_model(1 | nbody_system.time)
        print hermite.particles.x
        print hermite.particles.key, particles[1].key
        print hermite.stopping_conditions.out_of_box_detection.particles(0)
        self.assertTrue(
            hermite.stopping_conditions.out_of_box_detection.is_set())
        self.assertEquals(
            len(hermite.stopping_conditions.out_of_box_detection.particles(0)),
            1)
        self.assertEquals(
            hermite.stopping_conditions.out_of_box_detection.particles(0)
            [0].key, particles[1].key)
        hermite.stop()
Beispiel #16
0
 def test8(self):
     print "Testing Hermite collision_detection"
     particles = datamodel.Particles(7)
     particles.mass = 0.001 | nbody_system.mass
     particles.radius = 0.01 | nbody_system.length
     particles.x = [-101.0, -100.0, -0.5, 0.5, 100.0, 101.0, 104.0] | nbody_system.length
     particles.y = 0 | nbody_system.length
     particles.z = 0 | nbody_system.length
     particles.velocity = [[2, 0, 0], [-2, 0, 0]]*3 + [[-4, 0, 0]] | nbody_system.speed
     
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.set_defaults()
     instance.particles.add_particles(particles)
     collisions = instance.stopping_conditions.collision_detection
     collisions.enable()
     instance.evolve_model(1.0 | nbody_system.time)
     
     self.assertTrue(collisions.is_set())
     self.assertTrue(instance.model_time < 0.5 | nbody_system.time)
     self.assertEquals(len(collisions.particles(0)), 3)
     self.assertEquals(len(collisions.particles(1)), 3)
     self.assertEquals(len(particles - collisions.particles(0) - collisions.particles(1)), 1)
     self.assertEquals(abs(collisions.particles(0).x - collisions.particles(1).x) <= 
             (collisions.particles(0).radius + collisions.particles(1).radius),
             [True, True, True])
     
     sticky_merged = datamodel.Particles(len(collisions.particles(0)))
     sticky_merged.mass = collisions.particles(0).mass + collisions.particles(1).mass
     sticky_merged.radius = collisions.particles(0).radius
     for p1, p2, merged in zip(collisions.particles(0), collisions.particles(1), sticky_merged):
         merged.position = (p1 + p2).center_of_mass()
         merged.velocity = (p1 + p2).center_of_mass_velocity()
     
     print instance.model_time
     print instance.particles
     instance.particles.remove_particles(collisions.particles(0) + collisions.particles(1))
     instance.particles.add_particles(sticky_merged)
     
     instance.evolve_model(1.0 | nbody_system.time)
     print
     print instance.model_time
     print instance.particles
     self.assertTrue(collisions.is_set())
     self.assertTrue(instance.model_time < 1.0 | nbody_system.time)
     self.assertEquals(len(collisions.particles(0)), 1)
     self.assertEquals(len(collisions.particles(1)), 1)
     self.assertEquals(len(instance.particles - collisions.particles(0) - collisions.particles(1)), 2)
     self.assertEquals(abs(collisions.particles(0).x - collisions.particles(1).x) <= 
             (collisions.particles(0).radius + collisions.particles(1).radius),
             [True])
     instance.stop()
Beispiel #17
0
 def test8(self):
     print "Testing Hermite collision_detection"
     particles = datamodel.Particles(7)
     particles.mass = 0.001 | nbody_system.mass
     particles.radius = 0.01 | nbody_system.length
     particles.x = [-101.0, -100.0, -0.5, 0.5, 100.0, 101.0, 104.0] | nbody_system.length
     particles.y = 0 | nbody_system.length
     particles.z = 0 | nbody_system.length
     particles.velocity = [[2, 0, 0], [-2, 0, 0]]*3 + [[-4, 0, 0]] | nbody_system.speed
     
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.set_defaults()
     instance.particles.add_particles(particles)
     collisions = instance.stopping_conditions.collision_detection
     collisions.enable()
     instance.evolve_model(1.0 | nbody_system.time)
     
     self.assertTrue(collisions.is_set())
     self.assertTrue(instance.model_time < 0.5 | nbody_system.time)
     self.assertEquals(len(collisions.particles(0)), 3)
     self.assertEquals(len(collisions.particles(1)), 3)
     self.assertEquals(len(particles - collisions.particles(0) - collisions.particles(1)), 1)
     self.assertEquals(abs(collisions.particles(0).x - collisions.particles(1).x) <= 
             (collisions.particles(0).radius + collisions.particles(1).radius),
             [True, True, True])
     
     sticky_merged = datamodel.Particles(len(collisions.particles(0)))
     sticky_merged.mass = collisions.particles(0).mass + collisions.particles(1).mass
     sticky_merged.radius = collisions.particles(0).radius
     for p1, p2, merged in zip(collisions.particles(0), collisions.particles(1), sticky_merged):
         merged.position = (p1 + p2).center_of_mass()
         merged.velocity = (p1 + p2).center_of_mass_velocity()
     
     print instance.model_time
     print instance.particles
     instance.particles.remove_particles(collisions.particles(0) + collisions.particles(1))
     instance.particles.add_particles(sticky_merged)
     
     instance.evolve_model(1.0 | nbody_system.time)
     print
     print instance.model_time
     print instance.particles
     self.assertTrue(collisions.is_set())
     self.assertTrue(instance.model_time < 1.0 | nbody_system.time)
     self.assertEquals(len(collisions.particles(0)), 1)
     self.assertEquals(len(collisions.particles(1)), 1)
     self.assertEquals(len(instance.particles - collisions.particles(0) - collisions.particles(1)), 2)
     self.assertEquals(abs(collisions.particles(0).x - collisions.particles(1).x) <= 
             (collisions.particles(0).radius + collisions.particles(1).radius),
             [True])
     instance.stop()
Beispiel #18
0
    def test19(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,200.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        instance.parameters.end_time_accuracy_factor = 0.0
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.1 |nbody_system.time, 5)
       
        instance.stop()
Beispiel #19
0
    def test19(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,200.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        instance.parameters.end_time_accuracy_factor = 0.0
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.1 |nbody_system.time, 5)
       
        instance.stop()
Beispiel #20
0
    def test7(self):
        print "Test7: Testing effect of Hermite parameter epsilon_squared"
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun,
                                                 1.0 | units.AU)

        particles = datamodel.Particles(2)
        sun = particles[0]
        sun.mass = 1.0 | units.MSun
        sun.position = [0.0, 0.0, 0.0] | units.AU
        sun.velocity = [0.0, 0.0, 0.0] | units.AU / units.yr
        sun.radius = 1.0 | units.RSun

        earth = particles[1]
        earth.mass = 5.9736e24 | units.kg
        earth.radius = 6371.0 | units.km
        earth.position = [0.0, 1.0, 0.0] | units.AU
        earth.velocity = [2.0 * numpy.pi, -0.0001, 0.0] | units.AU / units.yr

        initial_direction = math.atan((earth.velocity[0] / earth.velocity[1]))
        final_direction = []
        for log_eps2 in range(-9, 10, 2):
            instance = Hermite(convert_nbody)
            instance.parameters.end_time_accuracy_factor = 0.0
            instance.parameters.epsilon_squared = 10.0**log_eps2 | units.AU**2
            instance.particles.add_particles(particles)
            instance.commit_particles()
            instance.evolve_model(0.25 | units.yr)
            final_direction.append(
                math.atan((instance.particles[1].velocity[0] /
                           instance.particles[1].velocity[1])))
            instance.stop()
        # Small values of epsilon_squared should result in normal earth-sun dynamics: rotation of 90 degrees
        self.assertAlmostEquals(abs(final_direction[0]),
                                abs(initial_direction + math.pi / 2.0), 2)
        # Large values of epsilon_squared should result in ~ no interaction
        self.assertAlmostEquals(final_direction[-1], initial_direction, 2)
        # Outcome is most sensitive to epsilon_squared when epsilon_squared = d(earth, sun)^2
        delta = [
            abs(final_direction[i + 1] - final_direction[i])
            for i in range(len(final_direction) - 1)
        ]
        self.assertEquals(delta[len(final_direction) // 2 - 1], max(delta))
Beispiel #21
0


G = 6.63784e-11

cm_to_m = 1. / 100.

msun_to_g = 1.988e33

pc_to_m = 3.08567758128e16

gcm_to_msunpc = 5.03e-34 * (3.086e18)**2



def print_log(time, gravity, particles, total_energy_at_t0):

    kinetic_energy = gravity.kinetic_energy

    potential_energy = gravity.potential_energy

    total_energy_at_this_time = kinetic_energy + potential_energy

    print "time                    : " , time

    print "energy error            : " , (total_energy_at_this_time - total_energy_at_t0) / total_energy_at_t0





def simulate_small_cluster(

        number_of_stars = 1000.,

        end_time = 40 | nbody_system.time,

        number_of_workers = 1

    ):

    #convert_nbody = nbody_system.nbody_to_si(number_of_stars | units.MSun, 1. | units.parsec)
Beispiel #22
0
 def test23(self):
     hermite = Hermite()
     hermite.parameters.epsilon_squared = 0.0 | nbody_system.length**2
     
     particles = datamodel.Particles(1)
     particles.position = ([0,0,0] )| nbody_system.length
     particles.velocity = ([1,0,0] )| nbody_system.speed
     particles.radius = 0| nbody_system.length
     particles.mass = 0.1| nbody_system.mass
             
     hermite.particles.add_particles(particles)
     hermite.evolve_model(1 | nbody_system.time)
     print hermite.particles.x
     self.assertAlmostRelativeEquals(hermite.model_time, 1 | nbody_system.time)
     self.assertAlmostRelativeEquals(hermite.particles[0].x, 1 | nbody_system.length)
     hermite.evolve_model(1.5 | nbody_system.time)
     print hermite.particles.x
     self.assertAlmostRelativeEquals(hermite.model_time, 1.5 | nbody_system.time)
     self.assertAlmostRelativeEquals(hermite.particles[0].x, 1.5 | nbody_system.length)
     hermite.stop()
Beispiel #23
0
 def test23(self):
     hermite = Hermite()
     hermite.parameters.epsilon_squared = 0.0 | nbody_system.length**2
     
     particles = datamodel.Particles(1)
     particles.position = ([0,0,0] )| nbody_system.length
     particles.velocity = ([1,0,0] )| nbody_system.speed
     particles.radius = 0| nbody_system.length
     particles.mass = 0.1| nbody_system.mass
             
     hermite.particles.add_particles(particles)
     hermite.evolve_model(1 | nbody_system.time)
     print hermite.particles.x
     self.assertAlmostRelativeEquals(hermite.model_time, 1 | nbody_system.time)
     self.assertAlmostRelativeEquals(hermite.particles[0].x, 1 | nbody_system.length)
     hermite.evolve_model(1.5 | nbody_system.time)
     print hermite.particles.x
     self.assertAlmostRelativeEquals(hermite.model_time, 1.5 | nbody_system.time)
     self.assertAlmostRelativeEquals(hermite.particles[0].x, 1.5 | nbody_system.length)
     hermite.stop()
Beispiel #24
0
 def test2(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     instance = Hermite(convert_nbody)
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.0 | units.AU**2
     instance.dt_dia = 5000
     
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
     instance.particles.add_particles(stars)
     
     for x in range(1, 500, 10):
         instance.evolve_model(x | units.day)
         instance.particles.copy_values_of_all_attributes_to(stars)
         stars.savepoint()
     
     if HAS_MATPLOTLIB:
         figure = pyplot.figure()
         plot = figure.add_subplot(1,1,1)
         
         x_points = earth.get_timeline_of_attribute("x")
         y_points = earth.get_timeline_of_attribute("y")
         
         x_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), x_points)
         y_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), y_points)
         
         plot.scatter(x_points_in_AU,y_points_in_AU, color = "b", marker = 'o')
         
         plot.set_xlim(-1.5, 1.5)
         plot.set_ylim(-1.5, 1.5)
            
         
         test_results_path = self.get_path_to_results()
         output_file = os.path.join(test_results_path, "hermite-earth-sun2.svg")
         figure.savefig(output_file)
     
     
     
     instance.cleanup_code()
     instance.stop()
Beispiel #25
0
 def test2(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     instance = Hermite(convert_nbody)
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.0 | units.AU**2
     instance.dt_dia = 5000
     
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
     instance.particles.add_particles(stars)
     
     for x in range(1, 500, 10):
         instance.evolve_model(x | units.day)
         instance.particles.copy_values_of_all_attributes_to(stars)
         stars.savepoint()
     
     if HAS_MATPLOTLIB:
         figure = pyplot.figure()
         plot = figure.add_subplot(1,1,1)
         
         x_points = earth.get_timeline_of_attribute("x")
         y_points = earth.get_timeline_of_attribute("y")
         
         x_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), x_points)
         y_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), y_points)
         
         plot.scatter(x_points_in_AU,y_points_in_AU, color = "b", marker = 'o')
         
         plot.set_xlim(-1.5, 1.5)
         plot.set_ylim(-1.5, 1.5)
            
         
         test_results_path = self.get_path_to_results()
         output_file = os.path.join(test_results_path, "hermite-earth-sun2.svg")
         figure.savefig(output_file)
     
     
     
     instance.cleanup_code()
     instance.stop()
Beispiel #26
0
 def test10(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     instance = Hermite(convert_nbody)
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.0 | units.AU**2
     instance.parameters.stopping_conditions_number_of_steps = 10
     self.assertEquals(instance.parameters.stopping_conditions_number_of_steps,10)
 
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
             
     instance.particles.add_particles(stars)
     instance.stopping_conditions.number_of_steps_detection.enable()
     instance.evolve_model(365.0 | units.day)
     self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set())
     instance.particles.copy_values_of_all_attributes_to(stars)
     
     instance.cleanup_code()
     
     instance.stop()
Beispiel #27
0
 def test12(self):
     particles = datamodel.Particles(2)
     particles.x = [0.0,1.00] | nbody_system.length
     particles.y = [0.0,0.0] | nbody_system.length
     particles.z = [0.0,0.0] | nbody_system.length
     particles.radius = 0.005 | nbody_system.length
     particles.vx =  [5.1,0.0] | nbody_system.speed
     particles.vy =  [0.0,0.0] | nbody_system.speed
     particles.vz =  [0.0,0.0]| nbody_system.speed
     particles.mass = [0.1,0.1] | nbody_system.mass
    
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.stopping_conditions_out_of_box_size = .5 | nbody_system.length
     self.assertEquals(instance.parameters.stopping_conditions_out_of_box_size, .5 | nbody_system.length)
     instance.particles.add_particles(particles) 
     instance.stopping_conditions.out_of_box_detection.enable()
     instance.evolve_model(0.1 | nbody_system.time)
     self.assertTrue(instance.stopping_conditions.out_of_box_detection.is_set())
     self.assertAlmostEqual(instance.stopping_conditions.out_of_box_detection.particles(0).x, 1.0 |nbody_system.length, 3)
     instance.stop()
Beispiel #28
0
 def test10(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     instance = Hermite(convert_nbody)
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.0 | units.AU**2
     instance.parameters.stopping_conditions_number_of_steps = 10
     self.assertEquals(instance.parameters.stopping_conditions_number_of_steps,10)
 
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
             
     instance.particles.add_particles(stars)
     instance.stopping_conditions.number_of_steps_detection.enable()
     instance.evolve_model(365.0 | units.day)
     self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set())
     instance.particles.copy_values_of_all_attributes_to(stars)
     
     instance.cleanup_code()
     
     instance.stop()
Beispiel #29
0
 def test1(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     hermite = Hermite(convert_nbody)
     hermite.initialize_code()
     hermite.parameters.epsilon_squared = 0.0 | units.AU**2
     hermite.parameters.end_time_accuracy_factor = 0.0
     hermite.dt_dia = 5000
     
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
             
     hermite.particles.add_particles(stars)
     
     hermite.evolve_model(365.0 | units.day)
     hermite.particles.copy_values_of_all_attributes_to(stars)
     
     position_at_start = earth.position.value_in(units.AU)[0]
     position_after_full_rotation = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(position_at_start, position_after_full_rotation, 6)
     
     hermite.evolve_model(365.0 + (365.0 / 2) | units.day)
     
     hermite.particles.copy_values_of_all_attributes_to(stars)
     position_after_half_a_rotation = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(-position_at_start, position_after_half_a_rotation, 3)
             
     hermite.evolve_model(365.0 + (365.0 / 2) + (365.0 / 4)  | units.day)
     
     hermite.particles.copy_values_of_all_attributes_to(stars)
     position_after_half_a_rotation = earth.position.value_in(units.AU)[1]
     self.assertAlmostRelativeEqual(-position_at_start, position_after_half_a_rotation, 3)
     
     hermite.cleanup_code()
     hermite.stop()
Beispiel #30
0
 def test11(self):
     particles = datamodel.Particles(2)
     particles.x = [0.0,10.0] | nbody_system.length
     particles.y = 0 | nbody_system.length
     particles.z = 0 | nbody_system.length
     particles.radius = 0.005 | nbody_system.length
     particles.vx =  0 | nbody_system.speed
     particles.vy =  0 | nbody_system.speed
     particles.vz =  0 | nbody_system.speed
     particles.mass = 1.0 | nbody_system.mass
    
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.stopping_conditions_number_of_steps = 2
     self.assertEquals(instance.parameters.stopping_conditions_number_of_steps, 2)
     instance.particles.add_particles(particles) 
     instance.stopping_conditions.number_of_steps_detection.enable()
     instance.evolve_model(10 | nbody_system.time)
     self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set())
     self.assertTrue(instance.model_time < 10 | nbody_system.time)
     
     instance.stop()
Beispiel #31
0
 def test11(self):
     particles = datamodel.Particles(2)
     particles.x = [0.0,10.0] | nbody_system.length
     particles.y = 0 | nbody_system.length
     particles.z = 0 | nbody_system.length
     particles.radius = 0.005 | nbody_system.length
     particles.vx =  0 | nbody_system.speed
     particles.vy =  0 | nbody_system.speed
     particles.vz =  0 | nbody_system.speed
     particles.mass = 1.0 | nbody_system.mass
    
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.stopping_conditions_number_of_steps = 2
     self.assertEquals(instance.parameters.stopping_conditions_number_of_steps, 2)
     instance.particles.add_particles(particles) 
     instance.stopping_conditions.number_of_steps_detection.enable()
     instance.evolve_model(10 | nbody_system.time)
     self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set())
     self.assertTrue(instance.model_time < 10 | nbody_system.time)
     
     instance.stop()
Beispiel #32
0
 def test22(self):
     hermite = Hermite()
     hermite.parameters.epsilon_squared = 0.0 | nbody_system.length**2
     
     particles = datamodel.Particles(2)
     particles.position = ([0,0,0], [1,0,0] )| nbody_system.length
     particles.velocity = ([-2,0,0], [2,0,0] )| nbody_system.speed
     particles.radius = 0| nbody_system.length
     particles.mass = 0.1| nbody_system.mass
             
     hermite.particles.add_particles(particles)
     hermite.stopping_conditions.out_of_box_detection.enable()
     hermite.parameters.stopping_conditions_out_of_box_size = 2 | nbody_system.length
     hermite.parameters.stopping_conditions_out_of_box_use_center_of_mass = False
     hermite.evolve_model(1 | nbody_system.time)
     print hermite.particles.x
     print hermite.particles.key, particles[1].key
     print hermite.stopping_conditions.out_of_box_detection.particles(0)
     self.assertTrue(hermite.stopping_conditions.out_of_box_detection.is_set())
     self.assertEquals(len(hermite.stopping_conditions.out_of_box_detection.particles(0)), 1)
     self.assertEquals(hermite.stopping_conditions.out_of_box_detection.particles(0)[0].key, particles[1].key)
     hermite.stop()
Beispiel #33
0
def evolve_system_with_massloss(particles, mass_sequence, time_sequence,
                                datahandler):
    """

    Parameters
    ----------
    particles: a two-body system 
    mass_sequence: sequence of masses
    time_sequence: sequence of times
    datahandler: HDF5HandlerAmuse context manager

    """
    h = datahandler

    intr = Hermite(nbody_to_si(particles.total_mass(), 1 | u.AU))
    intr.particles.add_particles(particles)

    h.append(particles[0].period0, "period0")

    for mass, time in zip(mass_sequence, time_sequence):

        intr.particles.move_to_center()
        intr.evolve_model(time)
        intr.particles[0].mass = mass

        h.append(intr.particles.center_of_mass(), "CM_position")
        h.append(intr.particles.center_of_mass_velocity(), "CM_velocity")
        h.append(intr.particles.position, "position")
        h.append(intr.particles.velocity, "velocity")
        h.append(intr.particles.mass, "mass")
        h.append(intr.particles.kinetic_energy(), "kinetic_energy")
        h.append(intr.particles.potential_energy(), "potential_energy")
        h.append(intr.get_total_energy(), "total_energy")
        h.append(time, "time")
        h.append(semimajoraxis_from_binary(intr.particles), "sma")
        h.append(eccentricity_from_binary(intr.particles), "eccentricity")

    intr.stop()
Beispiel #34
0
def simulate_small_cluster(
        number_of_stars=1000,
        end_time=40 | nbody_system.time,
        number_of_workers=1
        ):
    particles = new_plummer_model(number_of_stars)
    particles.scale_to_standard()

    gravity = Hermite(number_of_workers=number_of_workers)
    gravity.parameters.epsilon_squared = 0.15 | nbody_system.length ** 2

    gravity.particles.add_particles(particles)

    from_gravity_to_model = gravity.particles.new_channel_to(particles)

    time = 0.0 * end_time
    total_energy_at_t0 = gravity.kinetic_energy + gravity.potential_energy

    positions_at_different_times = []
    positions_at_different_times.append(particles.position)
    times = []
    times.append(time)

    print("evolving the model until t = " + str(end_time))
    while time < end_time:
        time += end_time / 3.0

        gravity.evolve_model(time)
        from_gravity_to_model.copy()

        positions_at_different_times.append(particles.position)
        times.append(time)
        print_log(time, gravity, particles, total_energy_at_t0)

    gravity.stop()

    return times, positions_at_different_times
Beispiel #35
0
def supernova_in_binary_nbody(M0, m0, a0, tsn):
    stars = make_circular_binary(M0, m0, a0)
    M, m, a, e, ta_out, inc, lan_out, aop_out = orbital_elements_from_binary(
        stars, G=constants.G)
    print "Initial binary: a=", a.in_(
        units.AU), "e=", e, "M=", stars[0].mass, "and m=", stars[1].mass

    converter = nbody_system.nbody_to_si(M+m, a)
    gravity = Hermite(converter)
    gravity.particles.add_particles(stars)

    print "Integrate binary to t=", tsn.in_(units.day)
    gravity.evolve_model(tsn)
    M, m, a, e, ta_out, inc, lan_out, aop_out = orbital_elements_from_binary(
        stars, G=constants.G)
    print "Pre supernova orbit: a=", a.in_(units.AU), "e=", e
    stars[0].mass *= 0.1
    print "Reduce stellar mass to: M=", stars[0].mass, "and m=", stars[1].mass

    v_kick = (0, 0, 0) | units.kms
    stars[0].velocity += v_kick
    gravity.evolve_model(2*tsn)
    M, m, a, e, ta_out, inc, lan_out, aop_out = orbital_elements_from_binary(
        stars, G=constants.G)
    print "Post supernova orbit: a=", a.in_(units.AU), "e=", e

    r0 = a
    a_ana = post_supernova_semimajor_axis(
        M0, m0, stars[0].mass, stars[1].mass, a, r0)
    e_ana = post_supernova_eccentricity(
        M0, m0, stars[0].mass, stars[1].mass, a, r0)
    print(
            "Analytic solution to post orbit orbital parameters: a=",
            a_ana, "e=", e_ana,
            )
    gravity.stop()
Beispiel #36
0
    def test7(self):
        print "Test7: Testing effect of Hermite parameter epsilon_squared"
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 1.0 | units.AU)
        
        particles = datamodel.Particles(2)
        sun = particles[0]
        sun.mass = 1.0 | units.MSun
        sun.position = [0.0, 0.0, 0.0] | units.AU
        sun.velocity = [0.0, 0.0, 0.0] | units.AU / units.yr
        sun.radius = 1.0 | units.RSun

        earth = particles[1]
        earth.mass = 5.9736e24 | units.kg
        earth.radius = 6371.0 | units.km
        earth.position = [0.0, 1.0, 0.0] | units.AU
        earth.velocity = [2.0*numpy.pi, -0.0001, 0.0] | units.AU / units.yr
        
        initial_direction = math.atan((earth.velocity[0]/earth.velocity[1]))
        final_direction = []
        for log_eps2 in range(-9,10,2):
            instance = Hermite(convert_nbody)
            instance.parameters.end_time_accuracy_factor = 0.0
            instance.parameters.epsilon_squared = 10.0**log_eps2 | units.AU ** 2
            instance.particles.add_particles(particles)
            instance.commit_particles()
            instance.evolve_model(0.25 | units.yr)
            final_direction.append(math.atan((instance.particles[1].velocity[0]/
                instance.particles[1].velocity[1])))
            instance.stop()
        # Small values of epsilon_squared should result in normal earth-sun dynamics: rotation of 90 degrees
        self.assertAlmostEquals(abs(final_direction[0]), abs(initial_direction+math.pi/2.0), 2)
        # Large values of epsilon_squared should result in ~ no interaction
        self.assertAlmostEquals(final_direction[-1], initial_direction, 2)
        # Outcome is most sensitive to epsilon_squared when epsilon_squared = d(earth, sun)^2
        delta = [abs(final_direction[i+1]-final_direction[i]) for i in range(len(final_direction)-1)]
        self.assertEquals(delta[len(final_direction)//2 -1], max(delta))
Beispiel #37
0
 def test20(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     hermite = Hermite(convert_nbody)
     hermite.initialize_code()
     hermite.parameters.epsilon_squared = 0.0 | units.AU**2
     hermite.parameters.end_time_accuracy_factor = 0.0
     hermite.parameters.is_time_reversed_allowed = True
     
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
             
     hermite.particles.add_particles(stars)
     
     hermite.evolve_model(365.0 | units.day)
     hermite.particles.copy_values_of_all_attributes_to(stars)
     
     position_at_start = earth.position.value_in(units.AU)[0]
     position_after_full_rotation = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(position_at_start, position_after_full_rotation, 6)
     
     hermite.evolve_model(365.0 - (365.0 / 2) | units.day)
     
     hermite.particles.copy_values_of_all_attributes_to(stars)
     position_after_half_a_rotation_backward = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(-position_at_start, position_after_half_a_rotation_backward, 4)
             
     hermite.evolve_model(365.0 | units.day)
     
     position_at_start = earth.position.value_in(units.AU)[0]
     position_after_full_rotation = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(position_at_start, position_after_full_rotation, 6)
     
     hermite.cleanup_code()
     
     hermite.stop()
Beispiel #38
0
    
    instance = Hermite(convert_nbody)
    instance.particles.add_particles(particles)

    channelp = instance.particles.new_channel_to(particles)
    
    start = 0 |units.yr
    end = 150 | units.yr
    step = 10|units.day

    timerange = VectorQuantity.arange(start, end, step)

    masses = []|units.MSun

    for i, time in enumerate(timerange):
        instance.evolve_model(time)
        channelp.copy()
        particles.savepoint(time)
        if (i % 220 == 0):
            instance.particles[0].mass = simulate_massloss(time)
        masses.append(instance.particles[0].mass)
 
    instance.stop()

    particle = particles[1]

    t, pos = particle.get_timeline_of_attribute_as_vector("position")
    distances = pos.lengths().as_quantity_in(units.AU)

    plot(timerange, distances , timerange, masses)
Beispiel #39
0
	def run(self, run_num):
		print("Setting up run %d..." % (run_num))

		# Create group for run
		run_group = self.hdf5_file.create_group(str(run_num))

		# create nbody converter thing?
	 	convert_nbody = nbody_system.nbody_to_si(100.0 | units.MSun, 1 | units.parsec)

		# initialize particle datamodel
		stars = Particles()
		
		print("		Initializing and populating clusters...")
		# populate/initialize clusters, add to particle model
		for c in self.clusters:
			c.populate()
			stars.add_particles(c.plummer)
		print("		Done!")

		# initialize codes
		# initialize hermite
		print("		Initializing hermite...")
		hermite_code = Hermite(convert_nbody)
		hermite_code.particles.add_particles(stars)
		detect_coll = hermite_code.stopping_conditions.collision_detection
		detect_coll.enable()
		print("		Done!")

		print("		Initializing SSE...")
		sse_code = SSE()
		sse_code.particles.add_particles(stars)

		print("Done!\n")

		# actually run the simulation!
		print("===== Run #%d =====" % (run_num))

		t = 0 # time
		i = 1 # iteration num
		c = 1 # collision num
		while(t < self.runtime):
			print("		Time (Myr): %d" % (t))

			print("			Simulating...")

			# evolve model
			hermite_code.evolve_model(t | units.Myr)
			sse_code.evolve_model(t | units.Myr)

			hermite_code.particles.copy_values_of_attribute_to("position", sse_code.particles)
			sse_code.particles.synchronize_to(hermite_code.particles)

			if detect_coll.is_set():
				print("Detected a collision!!")
				print(detect_coll.particles(0))
				coll_f = open(sub_folder + "/collision-" + str(c) + "_time" + str(t) + ".txt")
				coll_f.write( detect_coll.particles(0) )
				coll_f.close()
				c += 1
				# somehow put a log
				# also... eventually, "pause" the rest of the simulation and simulate the collision somehow

			#sse_code.particles.copy_values_of_attribute_to("mass", hermite_code.particles)
			#sse_code.particles.copy_values_of_attribute_to("stellar_type", hermite_code.particles)
			#sse_code.particles.copy_values_of_attribute_to("age", hermite_code.particles)
			#sse_code.particles.copy_values_of_attribute_to("luminosity", hermite_code.particles)
			#sse_code.particles.copy_values_of_attribute_to("temperature", hermite_code.particles)
			#sse_code.particles.copy_values_of_attribute_to("radius", hermite_code.particles)

			hermite_code.particles.mass = sse_code.particles.mass

			print("			Done.")

			# output to csv
			print("			Outputting to HDF5...")
			#file_name = sub_folder + "/data-" + str(i) + "_time-" + str(t) + ".txt"
			self.write_to_hdf5_file(run_group, i, t, stars)
			print("			Done.")

			#print("			Creating plot...")
			#plot_name = "System at " + str(t) + " Myr"
			#plot_path = sub_folder + "/plot-" + str(i) + "_time-" + str(t) + ".png"
			#plot_data(plot_name, plot_path, hermite_code.particles)
			#print("			Done.")

			t += self.timestep
			i += 1

		print("Run complete.\n")
Beispiel #40
0
    )

    subplot.set_xlim(-1, 1)
    subplot.set_ylim(-1, 1)
    subplot.set_xlabel('x (nbody length)')
    subplot.set_ylabel('y (nbody length)')

    pyplot.show()


if __name__ == "__main__":
    numpy.random.seed(1212)

    particles = new_cluster(128)

    code = Hermite()
    code.particles.add_particles(particles)

    stopping_condition = code.stopping_conditions.collision_detection
    stopping_condition.enable()

    code.evolve_model(4 | nbody_system.time)

    if not stopping_condition.is_set():
        raise Exception(
            "No stopping collision detected in the given timeframe.")

    plot_particles_and_highlight_collision(
        particles, stopping_condition.particles(0),
        stopping_condition.particles(1))
Beispiel #41
0
    instance.initialize_code()
    instance.particles.add_particles(particles)
    instance.commit_particles()

    channelp = instance.particles.new_channel_to(particles)
    
    start = 0 |units.yr
    end = 150 | units.yr
    step = 10|units.day

    timerange = VectorQuantity.arange(start, end, step)

    masses = []|units.MSun

    for i, time in enumerate(timerange):
        instance.evolve_model(time)
        channelp.copy()
        particles.savepoint(time)
        if (i % 220 == 0):
            instance.particles[0].mass = simulate_massloss(time)
        masses.append(instance.particles[0].mass)
 
    instance.stop()

    particle = particles[1]

    t, pos = particle.get_timeline_of_attribute_as_vector("position")
    distances = pos.lengths().as_quantity_in(units.AU)

    plot(timerange, distances , timerange, masses)
Beispiel #42
0
    )

    subplot.set_xlim(-1, 1)
    subplot.set_ylim(-1, 1)
    subplot.set_xlabel('x (nbody length)')
    subplot.set_ylabel('y (nbody length)')

    pyplot.show()


if __name__ == "__main__":
    numpy.random.seed(1212)

    particles = new_cluster(128)

    code = Hermite()
    code.particles.add_particles(particles)

    stopping_condition = code.stopping_conditions.collision_detection
    stopping_condition.enable()

    code.evolve_model(4 | nbody_system.time)

    if not stopping_condition.is_set():
        raise Exception(
            "No stopping collision detected in the given timeframe.")

    plot_particles_and_highlight_collision(particles,
                                           stopping_condition.particles(0),
                                           stopping_condition.particles(1))