Beispiel #1
0
    def evolve_model(self):
        convert_nbody = nbody_system.nbody_to_si(
            1.0 | units.MSun, 149.5e6 | units.km)

        hermite = Hermite(convert_nbody)
        hermite.initialize_code()

        hermite.parameters.epsilon_squared = 0.0 | units.AU**2

        stars = self.new_system_of_sun_and_earth()
        earth = stars[1]
        sun = stars[0]
        Earth = blender.Primitives.sphere(10, 10, 0.1)  # Make the earth avatar
        Sun = blender.Primitives.sphere(32, 32, 1)  # Make the sun avatar
        hermite.particles.add_particles(stars)

        for i in range(1*365):
            hermite.evolve_model(i | units.day)
            hermite.particles.copy_values_of_all_attributes_to(stars)
            # update avatar positions:
            Earth.loc = (
                    1*earth.position.value_in(units.AU)[0],
                    1*earth.position.value_in(units.AU)[1],
                    earth.position.value_in(units.AU)[2])
            Sun.loc = (
                    1*sun.position.value_in(units.AU)[0],
                    1*sun.position.value_in(units.AU)[1],
                    sun.position.value_in(units.AU)[2])
            blender.Redraw()

        hermite.print_refs()
        hermite.stop()
def evolve_system(particles):
    """
    Evolves the system using the Hermite integrator.


    Parameters
    ----------
    particles: amuse.datamodel.particles.Particles instance

    """
    times = numpy.linspace(0.0001, args.time, args.steps) |u.yr

    intr = Hermite(nbody_to_si(particles.total_mass(), 1 | u.AU))
    intr.particles.add_particles(particles)

    energy_begin = intr.get_total_energy()

    if args.dt is not None:
        intr.set_dt_param(args.dt)

    for t in times:
        intr.evolve_model(t)
        energy_error = (intr.get_total_energy() - energy_begin)/energy_begin
        print(intr.get_time_step().in_(u.day), intr.get_time().in_(u.yr))
        print(energy_error)
      

    print("energy error:{}".format(energy_error))

    intr.stop()
Beispiel #3
0
def evolve_system(particles):
    """
    Evolves the system using the Hermite integrator.


    Parameters
    ----------
    particles: amuse.datamodel.particles.Particles instance

    """
    times = numpy.linspace(0.0001, args.time, args.steps) | u.yr

    intr = Hermite(nbody_to_si(particles.total_mass(), 1 | u.AU))
    intr.particles.add_particles(particles)

    energy_begin = intr.get_total_energy()

    if args.dt is not None:
        intr.set_dt_param(args.dt)

    for t in times:
        intr.evolve_model(t)
        energy_error = (intr.get_total_energy() - energy_begin) / energy_begin
        print(intr.get_time_step().in_(u.day), intr.get_time().in_(u.yr))
        print(energy_error)

    print("energy error:{}".format(energy_error))

    intr.stop()
def simulate_system_until(particles, end_time):
    convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun,
                                             149.5e6 | units.km)

    instance = Hermite(convert_nbody)
    instance.parameters.epsilon_squared = 0.0 | units.AU**2
    instance.particles.add_particles(particles)

    t0 = 0 | units.day
    dt = 10 | units.day
    t = t0
    earth = instance.particles[1]

    x_values = quantities.AdaptingVectorQuantity()
    y_values = quantities.AdaptingVectorQuantity()

    while t < end_time:
        instance.evolve_model(t)

        x_values.append(earth.x)
        y_values.append(earth.y)

        t += dt

    instance.stop()

    return x_values, y_values
Beispiel #5
0
def simulate_system_until(particles, end_time):
    convert_nbody = nbody_system.nbody_to_si(
        1.0 | units.MSun, 149.5e6 | units.km)

    instance = Hermite(convert_nbody)
    instance.parameters.epsilon_squared = 0.0 | units.AU**2
    instance.particles.add_particles(particles)

    t0 = 0 | units.day
    dt = 10 | units.day
    t = t0
    earth = instance.particles[1]

    x_values = quantities.AdaptingVectorQuantity()
    y_values = quantities.AdaptingVectorQuantity()

    while t < end_time:
        instance.evolve_model(t)

        x_values.append(earth.x)
        y_values.append(earth.y)

        t += dt

    instance.stop()

    return x_values, y_values
Beispiel #6
0
    def evolve_model(self):
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun,
                                                 149.5e6 | units.km)

        hermite = Hermite(convert_nbody)
        hermite.initialize_code()

        hermite.parameters.epsilon_squared = 0.0 | units.AU**2

        stars = self.new_system_of_sun_and_earth()
        earth = stars[1]
        sun = stars[0]
        Earth = blender.Primitives.sphere(10, 10, 0.1)  # Make the earth avatar
        Sun = blender.Primitives.sphere(32, 32, 1)  # Make the sun avatar
        hermite.particles.add_particles(stars)

        for i in range(1 * 365):
            hermite.evolve_model(i | units.day)
            hermite.particles.copy_values_of_all_attributes_to(stars)
            # update avatar positions:
            Earth.loc = (1 * earth.position.value_in(units.AU)[0],
                         1 * earth.position.value_in(units.AU)[1],
                         earth.position.value_in(units.AU)[2])
            Sun.loc = (1 * sun.position.value_in(units.AU)[0],
                       1 * sun.position.value_in(units.AU)[1],
                       sun.position.value_in(units.AU)[2])
            blender.Redraw()

        hermite.print_refs()
        hermite.stop()
Beispiel #7
0
 def test1(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     hermite = Hermite(convert_nbody)
     hermite.initialize_code()
     hermite.parameters.epsilon_squared = 0.0 | units.AU**2
     hermite.parameters.end_time_accuracy_factor = 0.0
     hermite.dt_dia = 5000
     
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
             
     hermite.particles.add_particles(stars)
     
     hermite.evolve_model(365.0 | units.day)
     hermite.particles.copy_values_of_all_attributes_to(stars)
     
     position_at_start = earth.position.value_in(units.AU)[0]
     position_after_full_rotation = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(position_at_start, position_after_full_rotation, 6)
     
     hermite.evolve_model(365.0 + (365.0 / 2) | units.day)
     
     hermite.particles.copy_values_of_all_attributes_to(stars)
     position_after_half_a_rotation = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(-position_at_start, position_after_half_a_rotation, 3)
             
     hermite.evolve_model(365.0 + (365.0 / 2) + (365.0 / 4)  | units.day)
     
     hermite.particles.copy_values_of_all_attributes_to(stars)
     position_after_half_a_rotation = earth.position.value_in(units.AU)[1]
     self.assertAlmostRelativeEqual(-position_at_start, position_after_half_a_rotation, 3)
     
     hermite.cleanup_code()
     hermite.stop()
Beispiel #8
0
    def test12(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0, 1.00] | nbody_system.length
        particles.y = [0.0, 0.0] | nbody_system.length
        particles.z = [0.0, 0.0] | nbody_system.length
        particles.radius = 0.005 | nbody_system.length
        particles.vx = [5.1, 0.0] | nbody_system.speed
        particles.vy = [0.0, 0.0] | nbody_system.speed
        particles.vz = [0.0, 0.0] | nbody_system.speed
        particles.mass = [0.1, 0.1] | nbody_system.mass

        instance = Hermite()
        instance.initialize_code()
        instance.parameters.stopping_conditions_out_of_box_size = .5 | nbody_system.length
        self.assertEquals(
            instance.parameters.stopping_conditions_out_of_box_size,
            .5 | nbody_system.length)
        instance.particles.add_particles(particles)
        instance.stopping_conditions.out_of_box_detection.enable()
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertTrue(
            instance.stopping_conditions.out_of_box_detection.is_set())
        self.assertAlmostEqual(
            instance.stopping_conditions.out_of_box_detection.particles(0).x,
            1.0 | nbody_system.length, 3)
        instance.stop()
Beispiel #9
0
    def test15(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,10.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        p = datamodel.Particle(
            x = 1.0  | nbody_system.length,
            y = 2.0 | nbody_system.length,
            z = 3.0 | nbody_system.length,
            vx = 1.0  | nbody_system.speed,
            vy = 2.0 | nbody_system.speed,
            vz = 3.0 | nbody_system.speed,
            mass = 1.0 | nbody_system.mass,
            radius = 4.0 | nbody_system.length,
        )
        instance.particles.add_particle(p) 
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        self.assertEquals(instance.particles[1].radius, 0.0 | nbody_system.length)
        self.assertEquals(instance.particles[2].radius, 4.0 | nbody_system.length)
        
        instance.stop()
Beispiel #10
0
 def test6(self):
     print "Test6: Testing Hermite parameters"
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.yr, 1.0 | units.AU)
     instance = Hermite(convert_nbody)
     
     value = instance.get_eps2()
     self.assertEquals(0.0 | units.AU**2 , value)
     self.assertAlmostEquals(0.0 | units.AU**2, instance.parameters.epsilon_squared, in_units=units.AU**2)
     for x in [0.01, 0.1, 0.2]:
         instance.parameters.epsilon_squared = x | units.AU**2
         self.assertAlmostEquals(x | units.AU**2, instance.parameters.epsilon_squared, in_units=units.AU**2)
     
     value = instance.get_dt_param()
     self.assertEquals(0.03 , value)
     self.assertAlmostEquals(0.03 , instance.parameters.dt_param)
     for x in [0.001, 0.01, 0.1]:
         instance.parameters.dt_param = x
         self.assertAlmostEquals(x, instance.parameters.dt_param)
     
     value = instance.get_dt_dia()
     self.assertAlmostEquals(1.0 | units.yr, value)
     self.assertAlmostEquals(1.0 | units.yr, instance.parameters.dt_dia, in_units=units.yr)
     for x in [0.1, 10.0, 100.0]:
         instance.parameters.dt_dia = x | units.yr
         self.assertAlmostEquals(x | units.yr, instance.parameters.dt_dia, in_units=units.yr)
     
     value = instance.get_begin_time()
     self.assertEquals(0.0| units.yr, value)
     self.assertAlmostEquals(0.0 | units.yr, instance.parameters.begin_time, in_units=units.yr)
     for x in [1.0, 10.0, 100.0]:
         instance.parameters.begin_time = x | units.yr
         self.assertAlmostEquals(x | units.yr, instance.parameters.begin_time, in_units=units.yr)
     instance.stop()
Beispiel #11
0
    def test3(self):
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun,
                                                 149.5e6 | units.km)

        instance = Hermite(convert_nbody)
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.00001 | units.AU**2
        instance.dt_dia = 5000

        stars = datamodel.Stars(2)
        star1 = stars[0]
        star2 = stars[1]

        star1.mass = units.MSun(1.0)
        star1.position = units.AU(numpy.array((-1.0, 0.0, 0.0)))
        star1.velocity = units.AUd(numpy.array((0.0, 0.0, 0.0)))
        star1.radius = units.RSun(1.0)

        star2.mass = units.MSun(1.0)
        star2.position = units.AU(numpy.array((1.0, 0.0, 0.0)))
        star2.velocity = units.AUd(numpy.array((0.0, 0.0, 0.0)))
        star2.radius = units.RSun(100.0)

        instance.particles.add_particles(stars)

        for x in range(1, 2000, 10):
            instance.evolve_model(x | units.day)
            instance.particles.copy_values_of_all_attributes_to(stars)
            stars.savepoint()

        instance.stop()
Beispiel #12
0
def simulate_small_cluster(number_of_stars=1000,
                           end_time=40 | nbody_system.time,
                           number_of_workers=1):
    particles = new_plummer_model(number_of_stars)
    particles.scale_to_standard()

    gravity = Hermite(number_of_workers=number_of_workers)
    gravity.parameters.epsilon_squared = 0.15 | nbody_system.length**2

    gravity.particles.add_particles(particles)

    from_gravity_to_model = gravity.particles.new_channel_to(particles)

    time = 0.0 * end_time
    total_energy_at_t0 = gravity.kinetic_energy + gravity.potential_energy

    positions_at_different_times = []
    positions_at_different_times.append(particles.position)
    times = []
    times.append(time)

    print("evolving the model until t = " + str(end_time))
    while time < end_time:
        time += end_time / 3.0

        gravity.evolve_model(time)
        from_gravity_to_model.copy()

        positions_at_different_times.append(particles.position)
        times.append(time)
        print_log(time, gravity, particles, total_energy_at_t0)

    gravity.stop()

    return times, positions_at_different_times
Beispiel #13
0
 def test13(self):
     particles = plummer.new_plummer_model(31)
    
     instance = Hermite(number_of_workers=1)#, debugger="xterm")
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.01 | nbody_system.length ** 2
     instance.particles.add_particles(particles)
     
     instance.evolve_model(0.1 | nbody_system.time)
     instance.synchronize_model()
     expected_positions = instance.particles.position
     instance.stop()
     positions_per_workers = []
     for n in [2,3,4,5]:
         instance = Hermite(number_of_workers=n)
         instance.initialize_code()
         instance.parameters.epsilon_squared = 0.01 | nbody_system.length ** 2
         instance.particles.add_particles(particles)
         
         instance.evolve_model(0.1 | nbody_system.time)
         instance.synchronize_model()
         positions_per_workers.append(instance.particles.position)
         instance.stop()
      
      
     for index, n in enumerate([2,3,4,5]):
         self.assertAlmostEqual(expected_positions, positions_per_workers[index], 15)
Beispiel #14
0
    def test5(self):
        convert_nbody = nbody_system.nbody_to_si(5.0 | units.kg,
                                                 10.0 | units.m)

        instance = Hermite(convert_nbody)
        instance.initialize_code()

        particles = datamodel.Particles(2)
        self.assertEquals(len(instance.particles), 0)

        particles.mass = [15.0, 30.0] | units.kg
        particles.radius = [10.0, 20.0] | units.m
        particles.position = [[10.0, 20.0, 30.0], [20.0, 40.0, 60.0]] | units.m
        particles.velocity = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]
                              ] | units.m / units.s

        instance.particles.add_particles(particles)
        self.assertEquals(len(instance.particles), 2)
        instance.set_state(1, 16 | units.kg, 20.0 | units.m, 40.0 | units.m,
                           60.0 | units.m, 1.0 | units.ms, 1.0 | units.ms,
                           1.0 | units.ms, 20.0 | units.m)

        curr_state = instance.get_state(1)
        for expected, actual in zip([
                16 | units.kg, 20.0 | units.m, 40.0 | units.m, 60.0 | units.m,
                1.0 | units.ms, 1.0 | units.ms, 1.0 | units.ms, 20.0 | units.m
        ], curr_state):
            self.assertAlmostRelativeEquals(expected, actual)
        instance.stop()

        self.assertEquals(curr_state[0], 16 | units.kg, 8)
Beispiel #15
0
    def test15(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0, 10.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx = 0.0 | nbody_system.speed
        particles.vy = 0.0 | nbody_system.speed
        particles.vz = 0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles)
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius,
                          0.0 | nbody_system.length)
        p = datamodel.Particle(
            x=1.0 | nbody_system.length,
            y=2.0 | nbody_system.length,
            z=3.0 | nbody_system.length,
            vx=1.0 | nbody_system.speed,
            vy=2.0 | nbody_system.speed,
            vz=3.0 | nbody_system.speed,
            mass=1.0 | nbody_system.mass,
            radius=4.0 | nbody_system.length,
        )
        instance.particles.add_particle(p)
        self.assertEquals(instance.particles[0].radius,
                          0.0 | nbody_system.length)
        self.assertEquals(instance.particles[1].radius,
                          0.0 | nbody_system.length)
        self.assertEquals(instance.particles[2].radius,
                          4.0 | nbody_system.length)

        instance.stop()
Beispiel #16
0
    def test22(self):
        hermite = Hermite()
        hermite.parameters.epsilon_squared = 0.0 | nbody_system.length**2

        particles = datamodel.Particles(2)
        particles.position = ([0, 0, 0], [1, 0, 0]) | nbody_system.length
        particles.velocity = ([-2, 0, 0], [2, 0, 0]) | nbody_system.speed
        particles.radius = 0 | nbody_system.length
        particles.mass = 0.1 | nbody_system.mass

        hermite.particles.add_particles(particles)
        hermite.stopping_conditions.out_of_box_detection.enable()
        hermite.parameters.stopping_conditions_out_of_box_size = 2 | nbody_system.length
        hermite.parameters.stopping_conditions_out_of_box_use_center_of_mass = False
        hermite.evolve_model(1 | nbody_system.time)
        print hermite.particles.x
        print hermite.particles.key, particles[1].key
        print hermite.stopping_conditions.out_of_box_detection.particles(0)
        self.assertTrue(
            hermite.stopping_conditions.out_of_box_detection.is_set())
        self.assertEquals(
            len(hermite.stopping_conditions.out_of_box_detection.particles(0)),
            1)
        self.assertEquals(
            hermite.stopping_conditions.out_of_box_detection.particles(0)
            [0].key, particles[1].key)
        hermite.stop()
Beispiel #17
0
    def test5(self):
        convert_nbody = nbody_system.nbody_to_si(5.0 | units.kg, 10.0 | units.m)

        instance = Hermite(convert_nbody)
        instance.initialize_code()
        
        particles = datamodel.Particles(2)
        self.assertEquals(len(instance.particles), 0)
        
        particles.mass = [15.0, 30.0] | units.kg
        particles.radius =  [10.0, 20.0] | units.m
        particles.position = [[10.0, 20.0, 30.0], [20.0, 40.0, 60.0]] | units.m
        particles.velocity = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] | units.m / units.s

        
        instance.particles.add_particles(particles)
        self.assertEquals(len(instance.particles), 2)
        instance.set_state(1, 16|units.kg, 
                           20.0|units.m, 40.0|units.m, 60.0|units.m, 
                           1.0|units.ms, 1.0|units.ms, 1.0|units.ms , 
                           20.0|units.m)
        
        curr_state =  instance.get_state(1)
        for expected, actual in zip([16|units.kg, 
                           20.0|units.m, 40.0|units.m, 60.0|units.m, 
                           1.0|units.ms, 1.0|units.ms, 1.0|units.ms , 
                           20.0|units.m], curr_state):
            self.assertAlmostRelativeEquals(expected, actual)
        instance.stop()
        
        self.assertEquals(curr_state[0], 16|units.kg, 8)
Beispiel #18
0
    def test4(self):
        convert_nbody = nbody_system.nbody_to_si(5.0 | units.kg, 10.0 | units.m)

        instance = Hermite(convert_nbody)
        instance.initialize_code()
        
        particles = datamodel.Particles(2)
        self.assertEquals(len(instance.particles), 0)
        
        particles.mass = [15.0, 30.0] | units.kg
        particles.radius =  [10.0, 20.0] | units.m
        particles.position = [[10.0, 20.0, 30.0], [20.0, 40.0, 60.0]] | units.m
        particles.velocity = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] | units.m / units.s

        
        instance.particles.add_particles(particles)
        self.assertEquals(len(instance.particles), 2)
        
        instance.particles.mass =  [17.0, 33.0] | units.kg
        
        
        self.assertEquals(instance.get_mass(0), 17.0| units.kg) 
        self.assertEquals(instance.get_mass(1), 33.0| units.kg)  
        
        instance.stop()
Beispiel #19
0
 def test6(self):
     print "Test6: Testing Hermite parameters"
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.yr, 1.0 | units.AU)
     instance = Hermite(convert_nbody)
     
     value = instance.get_eps2()
     self.assertEquals(0.0 | units.AU**2 , value)
     self.assertAlmostEquals(0.0 | units.AU**2, instance.parameters.epsilon_squared, in_units=units.AU**2)
     for x in [0.01, 0.1, 0.2]:
         instance.parameters.epsilon_squared = x | units.AU**2
         self.assertAlmostEquals(x | units.AU**2, instance.parameters.epsilon_squared, in_units=units.AU**2)
     
     value = instance.get_dt_param()
     self.assertEquals(0.03 , value)
     self.assertAlmostEquals(0.03 , instance.parameters.dt_param)
     for x in [0.001, 0.01, 0.1]:
         instance.parameters.dt_param = x
         self.assertAlmostEquals(x, instance.parameters.dt_param)
     
     value = instance.get_dt_dia()
     self.assertAlmostEquals(1.0 | units.yr, value)
     self.assertAlmostEquals(1.0 | units.yr, instance.parameters.dt_dia, in_units=units.yr)
     for x in [0.1, 10.0, 100.0]:
         instance.parameters.dt_dia = x | units.yr
         self.assertAlmostEquals(x | units.yr, instance.parameters.dt_dia, in_units=units.yr)
     
     value = instance.get_begin_time()
     self.assertEquals(0.0| units.yr, value)
     self.assertAlmostEquals(0.0 | units.yr, instance.parameters.begin_time, in_units=units.yr)
     for x in [1.0, 10.0, 100.0]:
         instance.parameters.begin_time = x | units.yr
         self.assertAlmostEquals(x | units.yr, instance.parameters.begin_time, in_units=units.yr)
     instance.stop()
Beispiel #20
0
    def test13(self):
        particles = plummer.new_plummer_model(31)

        instance = Hermite(number_of_workers=1)  #, debugger="xterm")
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.01 | nbody_system.length**2
        instance.particles.add_particles(particles)

        instance.evolve_model(0.1 | nbody_system.time)
        instance.synchronize_model()
        expected_positions = instance.particles.position
        instance.stop()
        positions_per_workers = []
        for n in [2, 3, 4, 5]:
            instance = Hermite(number_of_workers=n)
            instance.initialize_code()
            instance.parameters.epsilon_squared = 0.01 | nbody_system.length**2
            instance.particles.add_particles(particles)

            instance.evolve_model(0.1 | nbody_system.time)
            instance.synchronize_model()
            positions_per_workers.append(instance.particles.position)
            instance.stop()

        for index, n in enumerate([2, 3, 4, 5]):
            self.assertAlmostEqual(expected_positions,
                                   positions_per_workers[index], 15)
Beispiel #21
0
    def test3(self):
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)

        instance = Hermite(convert_nbody)
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.00001 | units.AU**2
        instance.dt_dia = 5000
        
        stars = datamodel.Stars(2)
        star1 = stars[0]
        star2 = stars[1]

        star1.mass = units.MSun(1.0)
        star1.position = units.AU(numpy.array((-1.0,0.0,0.0)))
        star1.velocity = units.AUd(numpy.array((0.0,0.0,0.0)))
        star1.radius = units.RSun(1.0)

        star2.mass = units.MSun(1.0)
        star2.position = units.AU(numpy.array((1.0,0.0,0.0)))
        star2.velocity = units.AUd(numpy.array((0.0,0.0,0.0)))
        star2.radius = units.RSun(100.0)
        
        instance.particles.add_particles(stars)
    
        for x in range(1,2000,10):
            instance.evolve_model(x | units.day)
            instance.particles.copy_values_of_all_attributes_to(stars)
            stars.savepoint()
        
        instance.stop()
Beispiel #22
0
    def test18(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,1.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        instance.parameters.end_time_accuracy_factor = 1.0
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.10563767746 |nbody_system.time, 5)
        instance.parameters.end_time_accuracy_factor = -1.0
        instance.evolve_model(0.3 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.266758127609 |nbody_system.time, 5)
        instance.parameters.end_time_accuracy_factor = 0.0
        instance.evolve_model(0.4 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.4 |nbody_system.time, 6)
        instance.parameters.end_time_accuracy_factor = -0.5
        instance.evolve_model(0.5 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.48974930698 |nbody_system.time, 6)
        instance.parameters.end_time_accuracy_factor = +0.5
        instance.evolve_model(0.6 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.6042733579 |nbody_system.time, 6)
        
        instance.stop()
Beispiel #23
0
    def test18(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,1.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        instance.parameters.end_time_accuracy_factor = 1.0
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.10563767746 |nbody_system.time, 5)
        instance.parameters.end_time_accuracy_factor = -1.0
        instance.evolve_model(0.3 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.266758127609 |nbody_system.time, 5)
        instance.parameters.end_time_accuracy_factor = 0.0
        instance.evolve_model(0.4 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.4 |nbody_system.time, 6)
        instance.parameters.end_time_accuracy_factor = -0.5
        instance.evolve_model(0.5 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.48974930698 |nbody_system.time, 6)
        instance.parameters.end_time_accuracy_factor = +0.5
        instance.evolve_model(0.6 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.6042733579 |nbody_system.time, 6)
        
        instance.stop()
Beispiel #24
0
 def test24(self):
     hermite = Hermite(reuse_worker = True)
     channel1 = hermite.legacy_interface.channel
     hermite.stop()
     hermite = Hermite(reuse_worker = True)
     channel2 = hermite.legacy_interface.channel
     hermite.stop()
     self.assertEquals(id(channel1), id(channel2))
Beispiel #25
0
 def test8(self):
     print "Testing Hermite collision_detection"
     particles = datamodel.Particles(7)
     particles.mass = 0.001 | nbody_system.mass
     particles.radius = 0.01 | nbody_system.length
     particles.x = [-101.0, -100.0, -0.5, 0.5, 100.0, 101.0, 104.0] | nbody_system.length
     particles.y = 0 | nbody_system.length
     particles.z = 0 | nbody_system.length
     particles.velocity = [[2, 0, 0], [-2, 0, 0]]*3 + [[-4, 0, 0]] | nbody_system.speed
     
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.set_defaults()
     instance.particles.add_particles(particles)
     collisions = instance.stopping_conditions.collision_detection
     collisions.enable()
     instance.evolve_model(1.0 | nbody_system.time)
     
     self.assertTrue(collisions.is_set())
     self.assertTrue(instance.model_time < 0.5 | nbody_system.time)
     self.assertEquals(len(collisions.particles(0)), 3)
     self.assertEquals(len(collisions.particles(1)), 3)
     self.assertEquals(len(particles - collisions.particles(0) - collisions.particles(1)), 1)
     self.assertEquals(abs(collisions.particles(0).x - collisions.particles(1).x) <= 
             (collisions.particles(0).radius + collisions.particles(1).radius),
             [True, True, True])
     
     sticky_merged = datamodel.Particles(len(collisions.particles(0)))
     sticky_merged.mass = collisions.particles(0).mass + collisions.particles(1).mass
     sticky_merged.radius = collisions.particles(0).radius
     for p1, p2, merged in zip(collisions.particles(0), collisions.particles(1), sticky_merged):
         merged.position = (p1 + p2).center_of_mass()
         merged.velocity = (p1 + p2).center_of_mass_velocity()
     
     print instance.model_time
     print instance.particles
     instance.particles.remove_particles(collisions.particles(0) + collisions.particles(1))
     instance.particles.add_particles(sticky_merged)
     
     instance.evolve_model(1.0 | nbody_system.time)
     print
     print instance.model_time
     print instance.particles
     self.assertTrue(collisions.is_set())
     self.assertTrue(instance.model_time < 1.0 | nbody_system.time)
     self.assertEquals(len(collisions.particles(0)), 1)
     self.assertEquals(len(collisions.particles(1)), 1)
     self.assertEquals(len(instance.particles - collisions.particles(0) - collisions.particles(1)), 2)
     self.assertEquals(abs(collisions.particles(0).x - collisions.particles(1).x) <= 
             (collisions.particles(0).radius + collisions.particles(1).radius),
             [True])
     instance.stop()
Beispiel #26
0
 def test8(self):
     print "Testing Hermite collision_detection"
     particles = datamodel.Particles(7)
     particles.mass = 0.001 | nbody_system.mass
     particles.radius = 0.01 | nbody_system.length
     particles.x = [-101.0, -100.0, -0.5, 0.5, 100.0, 101.0, 104.0] | nbody_system.length
     particles.y = 0 | nbody_system.length
     particles.z = 0 | nbody_system.length
     particles.velocity = [[2, 0, 0], [-2, 0, 0]]*3 + [[-4, 0, 0]] | nbody_system.speed
     
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.set_defaults()
     instance.particles.add_particles(particles)
     collisions = instance.stopping_conditions.collision_detection
     collisions.enable()
     instance.evolve_model(1.0 | nbody_system.time)
     
     self.assertTrue(collisions.is_set())
     self.assertTrue(instance.model_time < 0.5 | nbody_system.time)
     self.assertEquals(len(collisions.particles(0)), 3)
     self.assertEquals(len(collisions.particles(1)), 3)
     self.assertEquals(len(particles - collisions.particles(0) - collisions.particles(1)), 1)
     self.assertEquals(abs(collisions.particles(0).x - collisions.particles(1).x) <= 
             (collisions.particles(0).radius + collisions.particles(1).radius),
             [True, True, True])
     
     sticky_merged = datamodel.Particles(len(collisions.particles(0)))
     sticky_merged.mass = collisions.particles(0).mass + collisions.particles(1).mass
     sticky_merged.radius = collisions.particles(0).radius
     for p1, p2, merged in zip(collisions.particles(0), collisions.particles(1), sticky_merged):
         merged.position = (p1 + p2).center_of_mass()
         merged.velocity = (p1 + p2).center_of_mass_velocity()
     
     print instance.model_time
     print instance.particles
     instance.particles.remove_particles(collisions.particles(0) + collisions.particles(1))
     instance.particles.add_particles(sticky_merged)
     
     instance.evolve_model(1.0 | nbody_system.time)
     print
     print instance.model_time
     print instance.particles
     self.assertTrue(collisions.is_set())
     self.assertTrue(instance.model_time < 1.0 | nbody_system.time)
     self.assertEquals(len(collisions.particles(0)), 1)
     self.assertEquals(len(collisions.particles(1)), 1)
     self.assertEquals(len(instance.particles - collisions.particles(0) - collisions.particles(1)), 2)
     self.assertEquals(abs(collisions.particles(0).x - collisions.particles(1).x) <= 
             (collisions.particles(0).radius + collisions.particles(1).radius),
             [True])
     instance.stop()
Beispiel #27
0
 def test17(self):
     particles = new_plummer_model(50)
     particles.scale_to_standard()
     instance = Hermite()
     instance.parameters.epsilon_squared = 0.22000 | nbody_system.length**2
     instance.particles.add_particles(particles)
     self.assertEquals(len(instance.particles), 50)
     
     instance.reset()
     
     self.assertAlmostRelativeEquals(instance.parameters.epsilon_squared , 0.22000 | nbody_system.length**2)
     self.assertEquals(len(instance.particles), 0)
     instance.particles.add_particles(particles)
     self.assertEquals(len(instance.particles), 50)
     instance.stop()
Beispiel #28
0
    def test19(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,200.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        instance.parameters.end_time_accuracy_factor = 0.0
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.1 |nbody_system.time, 5)
       
        instance.stop()
Beispiel #29
0
    def test19(self):
        particles = datamodel.Particles(2)
        particles.x = [0.0,200.0] | nbody_system.length
        particles.y = 0.0 | nbody_system.length
        particles.z = 0.0 | nbody_system.length
        particles.vx =  0.0 | nbody_system.speed
        particles.vy =  0.0 | nbody_system.speed
        particles.vz =  0.0 | nbody_system.speed
        particles.mass = 1.0 | nbody_system.mass

        instance = Hermite()
        instance.particles.add_particles(particles) 
        instance.commit_particles()
        self.assertEquals(instance.particles[0].radius, 0.0 | nbody_system.length)
        instance.parameters.end_time_accuracy_factor = 0.0
        instance.evolve_model(0.1 | nbody_system.time)
        self.assertAlmostRelativeEquals(instance.model_time, 0.1 |nbody_system.time, 5)
       
        instance.stop()
Beispiel #30
0
    def test14(self):
        instance = Hermite()
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.00001 | nbody_system.length**2

        particles = datamodel.Particles(2)
        particles.mass = [1.0, 1.0] | nbody_system.mass
        particles.radius = [0.0001, 0.0001] | nbody_system.length
        particles.position = [[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]
                              ] | nbody_system.length
        particles.velocity = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]
                              ] | nbody_system.speed
        instance.particles.add_particles(particles)

        zero = 0.0 | nbody_system.length
        fx, fy, fz = instance.get_gravity_at_point(zero,
                                                   1.0 | nbody_system.length,
                                                   zero, zero)
        self.assertAlmostEqual(fx, 0.0 | nbody_system.acceleration, 6)
        self.assertAlmostEqual(fy, 0.0 | nbody_system.acceleration, 6)
        self.assertAlmostEqual(fz, 0.0 | nbody_system.acceleration, 6)

        for x in (0.25, 0.5, 0.75):
            x0 = x | nbody_system.length
            x1 = (2.0 - x) | nbody_system.length
            potential0 = instance.get_potential_at_point(zero, x0, zero, zero)
            potential1 = instance.get_potential_at_point(zero, x1, zero, zero)
            fx0, fy0, fz0 = instance.get_gravity_at_point(zero, x0, zero, zero)
            fx1, fy1, fz1 = instance.get_gravity_at_point(zero, x1, zero, zero)

            self.assertAlmostEqual(fy0, 0.0 | nbody_system.acceleration, 6)
            self.assertAlmostEqual(fz0, 0.0 | nbody_system.acceleration, 6)
            self.assertAlmostEqual(fy1, 0.0 | nbody_system.acceleration, 6)
            self.assertAlmostEqual(fz1, 0.0 | nbody_system.acceleration, 6)

            self.assertAlmostEqual(fx0, -1.0 * fx1, 5)
            fx = (-1.0 / (x0**2) + 1.0 /
                  (x1**2)) * (1.0
                              | nbody_system.length**3 / nbody_system.time**2)
            self.assertAlmostEqual(fx, fx0, 2)
            self.assertAlmostEqual(potential0, potential1, 5)
        instance.stop()
Beispiel #31
0
    def test7(self):
        print "Test7: Testing effect of Hermite parameter epsilon_squared"
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun,
                                                 1.0 | units.AU)

        particles = datamodel.Particles(2)
        sun = particles[0]
        sun.mass = 1.0 | units.MSun
        sun.position = [0.0, 0.0, 0.0] | units.AU
        sun.velocity = [0.0, 0.0, 0.0] | units.AU / units.yr
        sun.radius = 1.0 | units.RSun

        earth = particles[1]
        earth.mass = 5.9736e24 | units.kg
        earth.radius = 6371.0 | units.km
        earth.position = [0.0, 1.0, 0.0] | units.AU
        earth.velocity = [2.0 * numpy.pi, -0.0001, 0.0] | units.AU / units.yr

        initial_direction = math.atan((earth.velocity[0] / earth.velocity[1]))
        final_direction = []
        for log_eps2 in range(-9, 10, 2):
            instance = Hermite(convert_nbody)
            instance.parameters.end_time_accuracy_factor = 0.0
            instance.parameters.epsilon_squared = 10.0**log_eps2 | units.AU**2
            instance.particles.add_particles(particles)
            instance.commit_particles()
            instance.evolve_model(0.25 | units.yr)
            final_direction.append(
                math.atan((instance.particles[1].velocity[0] /
                           instance.particles[1].velocity[1])))
            instance.stop()
        # Small values of epsilon_squared should result in normal earth-sun dynamics: rotation of 90 degrees
        self.assertAlmostEquals(abs(final_direction[0]),
                                abs(initial_direction + math.pi / 2.0), 2)
        # Large values of epsilon_squared should result in ~ no interaction
        self.assertAlmostEquals(final_direction[-1], initial_direction, 2)
        # Outcome is most sensitive to epsilon_squared when epsilon_squared = d(earth, sun)^2
        delta = [
            abs(final_direction[i + 1] - final_direction[i])
            for i in range(len(final_direction) - 1)
        ]
        self.assertEquals(delta[len(final_direction) // 2 - 1], max(delta))
Beispiel #32
0


G = 6.63784e-11

cm_to_m = 1. / 100.

msun_to_g = 1.988e33

pc_to_m = 3.08567758128e16

gcm_to_msunpc = 5.03e-34 * (3.086e18)**2



def print_log(time, gravity, particles, total_energy_at_t0):

    kinetic_energy = gravity.kinetic_energy

    potential_energy = gravity.potential_energy

    total_energy_at_this_time = kinetic_energy + potential_energy

    print "time                    : " , time

    print "energy error            : " , (total_energy_at_this_time - total_energy_at_t0) / total_energy_at_t0





def simulate_small_cluster(

        number_of_stars = 1000.,

        end_time = 40 | nbody_system.time,

        number_of_workers = 1

    ):

    #convert_nbody = nbody_system.nbody_to_si(number_of_stars | units.MSun, 1. | units.parsec)
Beispiel #33
0
 def test23(self):
     hermite = Hermite()
     hermite.parameters.epsilon_squared = 0.0 | nbody_system.length**2
     
     particles = datamodel.Particles(1)
     particles.position = ([0,0,0] )| nbody_system.length
     particles.velocity = ([1,0,0] )| nbody_system.speed
     particles.radius = 0| nbody_system.length
     particles.mass = 0.1| nbody_system.mass
             
     hermite.particles.add_particles(particles)
     hermite.evolve_model(1 | nbody_system.time)
     print hermite.particles.x
     self.assertAlmostRelativeEquals(hermite.model_time, 1 | nbody_system.time)
     self.assertAlmostRelativeEquals(hermite.particles[0].x, 1 | nbody_system.length)
     hermite.evolve_model(1.5 | nbody_system.time)
     print hermite.particles.x
     self.assertAlmostRelativeEquals(hermite.model_time, 1.5 | nbody_system.time)
     self.assertAlmostRelativeEquals(hermite.particles[0].x, 1.5 | nbody_system.length)
     hermite.stop()
Beispiel #34
0
 def test23(self):
     hermite = Hermite()
     hermite.parameters.epsilon_squared = 0.0 | nbody_system.length**2
     
     particles = datamodel.Particles(1)
     particles.position = ([0,0,0] )| nbody_system.length
     particles.velocity = ([1,0,0] )| nbody_system.speed
     particles.radius = 0| nbody_system.length
     particles.mass = 0.1| nbody_system.mass
             
     hermite.particles.add_particles(particles)
     hermite.evolve_model(1 | nbody_system.time)
     print hermite.particles.x
     self.assertAlmostRelativeEquals(hermite.model_time, 1 | nbody_system.time)
     self.assertAlmostRelativeEquals(hermite.particles[0].x, 1 | nbody_system.length)
     hermite.evolve_model(1.5 | nbody_system.time)
     print hermite.particles.x
     self.assertAlmostRelativeEquals(hermite.model_time, 1.5 | nbody_system.time)
     self.assertAlmostRelativeEquals(hermite.particles[0].x, 1.5 | nbody_system.length)
     hermite.stop()
Beispiel #35
0
 def test2(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     instance = Hermite(convert_nbody)
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.0 | units.AU**2
     instance.dt_dia = 5000
     
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
     instance.particles.add_particles(stars)
     
     for x in range(1, 500, 10):
         instance.evolve_model(x | units.day)
         instance.particles.copy_values_of_all_attributes_to(stars)
         stars.savepoint()
     
     if HAS_MATPLOTLIB:
         figure = pyplot.figure()
         plot = figure.add_subplot(1,1,1)
         
         x_points = earth.get_timeline_of_attribute("x")
         y_points = earth.get_timeline_of_attribute("y")
         
         x_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), x_points)
         y_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), y_points)
         
         plot.scatter(x_points_in_AU,y_points_in_AU, color = "b", marker = 'o')
         
         plot.set_xlim(-1.5, 1.5)
         plot.set_ylim(-1.5, 1.5)
            
         
         test_results_path = self.get_path_to_results()
         output_file = os.path.join(test_results_path, "hermite-earth-sun2.svg")
         figure.savefig(output_file)
     
     
     
     instance.cleanup_code()
     instance.stop()
Beispiel #36
0
 def test2(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     instance = Hermite(convert_nbody)
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.0 | units.AU**2
     instance.dt_dia = 5000
     
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
     instance.particles.add_particles(stars)
     
     for x in range(1, 500, 10):
         instance.evolve_model(x | units.day)
         instance.particles.copy_values_of_all_attributes_to(stars)
         stars.savepoint()
     
     if HAS_MATPLOTLIB:
         figure = pyplot.figure()
         plot = figure.add_subplot(1,1,1)
         
         x_points = earth.get_timeline_of_attribute("x")
         y_points = earth.get_timeline_of_attribute("y")
         
         x_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), x_points)
         y_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), y_points)
         
         plot.scatter(x_points_in_AU,y_points_in_AU, color = "b", marker = 'o')
         
         plot.set_xlim(-1.5, 1.5)
         plot.set_ylim(-1.5, 1.5)
            
         
         test_results_path = self.get_path_to_results()
         output_file = os.path.join(test_results_path, "hermite-earth-sun2.svg")
         figure.savefig(output_file)
     
     
     
     instance.cleanup_code()
     instance.stop()
Beispiel #37
0
 def test10(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     instance = Hermite(convert_nbody)
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.0 | units.AU**2
     instance.parameters.stopping_conditions_number_of_steps = 10
     self.assertEquals(instance.parameters.stopping_conditions_number_of_steps,10)
 
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
             
     instance.particles.add_particles(stars)
     instance.stopping_conditions.number_of_steps_detection.enable()
     instance.evolve_model(365.0 | units.day)
     self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set())
     instance.particles.copy_values_of_all_attributes_to(stars)
     
     instance.cleanup_code()
     
     instance.stop()
Beispiel #38
0
 def test12(self):
     particles = datamodel.Particles(2)
     particles.x = [0.0,1.00] | nbody_system.length
     particles.y = [0.0,0.0] | nbody_system.length
     particles.z = [0.0,0.0] | nbody_system.length
     particles.radius = 0.005 | nbody_system.length
     particles.vx =  [5.1,0.0] | nbody_system.speed
     particles.vy =  [0.0,0.0] | nbody_system.speed
     particles.vz =  [0.0,0.0]| nbody_system.speed
     particles.mass = [0.1,0.1] | nbody_system.mass
    
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.stopping_conditions_out_of_box_size = .5 | nbody_system.length
     self.assertEquals(instance.parameters.stopping_conditions_out_of_box_size, .5 | nbody_system.length)
     instance.particles.add_particles(particles) 
     instance.stopping_conditions.out_of_box_detection.enable()
     instance.evolve_model(0.1 | nbody_system.time)
     self.assertTrue(instance.stopping_conditions.out_of_box_detection.is_set())
     self.assertAlmostEqual(instance.stopping_conditions.out_of_box_detection.particles(0).x, 1.0 |nbody_system.length, 3)
     instance.stop()
Beispiel #39
0
 def test10(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     instance = Hermite(convert_nbody)
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.0 | units.AU**2
     instance.parameters.stopping_conditions_number_of_steps = 10
     self.assertEquals(instance.parameters.stopping_conditions_number_of_steps,10)
 
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
             
     instance.particles.add_particles(stars)
     instance.stopping_conditions.number_of_steps_detection.enable()
     instance.evolve_model(365.0 | units.day)
     self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set())
     instance.particles.copy_values_of_all_attributes_to(stars)
     
     instance.cleanup_code()
     
     instance.stop()
Beispiel #40
0
 def test11(self):
     particles = datamodel.Particles(2)
     particles.x = [0.0,10.0] | nbody_system.length
     particles.y = 0 | nbody_system.length
     particles.z = 0 | nbody_system.length
     particles.radius = 0.005 | nbody_system.length
     particles.vx =  0 | nbody_system.speed
     particles.vy =  0 | nbody_system.speed
     particles.vz =  0 | nbody_system.speed
     particles.mass = 1.0 | nbody_system.mass
    
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.stopping_conditions_number_of_steps = 2
     self.assertEquals(instance.parameters.stopping_conditions_number_of_steps, 2)
     instance.particles.add_particles(particles) 
     instance.stopping_conditions.number_of_steps_detection.enable()
     instance.evolve_model(10 | nbody_system.time)
     self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set())
     self.assertTrue(instance.model_time < 10 | nbody_system.time)
     
     instance.stop()
Beispiel #41
0
 def test11(self):
     particles = datamodel.Particles(2)
     particles.x = [0.0,10.0] | nbody_system.length
     particles.y = 0 | nbody_system.length
     particles.z = 0 | nbody_system.length
     particles.radius = 0.005 | nbody_system.length
     particles.vx =  0 | nbody_system.speed
     particles.vy =  0 | nbody_system.speed
     particles.vz =  0 | nbody_system.speed
     particles.mass = 1.0 | nbody_system.mass
    
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.stopping_conditions_number_of_steps = 2
     self.assertEquals(instance.parameters.stopping_conditions_number_of_steps, 2)
     instance.particles.add_particles(particles) 
     instance.stopping_conditions.number_of_steps_detection.enable()
     instance.evolve_model(10 | nbody_system.time)
     self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set())
     self.assertTrue(instance.model_time < 10 | nbody_system.time)
     
     instance.stop()
Beispiel #42
0
 def test16(self):
     particles = new_plummer_model(200)
     particles.scale_to_standard()
     instance = Hermite()
     instance.initialize_code()
     instance.parameters.epsilon_squared = 0.00000 | nbody_system.length**2
     instance.particles.add_particles(particles)
     
     x = numpy.arange(-1,1,0.1) | nbody_system.length
     zero = numpy.zeros(len(x)) | nbody_system.length
     potential0 =  instance.get_potential_at_point(zero, x , zero, zero)
     instance.stop()
     for n in (2, 3, 4):
         
         instance = Hermite(number_of_workers = n)
         instance.initialize_code()
         instance.parameters.epsilon_squared = 0.00000 | nbody_system.length**2
         instance.particles.add_particles(particles)
         potential =  instance.get_potential_at_point(zero, x , zero, zero)
     
         self.assertAlmostRelativeEquals(potential0, potential, 8)
         instance.stop()
Beispiel #43
0
    def test16(self):
        particles = new_plummer_model(200)
        particles.scale_to_standard()
        instance = Hermite()
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.00000 | nbody_system.length**2
        instance.particles.add_particles(particles)

        x = numpy.arange(-1, 1, 0.1) | nbody_system.length
        zero = numpy.zeros(len(x)) | nbody_system.length
        potential0 = instance.get_potential_at_point(zero, x, zero, zero)
        instance.stop()
        for n in (2, 3, 4):

            instance = Hermite(number_of_workers=n)
            instance.initialize_code()
            instance.parameters.epsilon_squared = 0.00000 | nbody_system.length**2
            instance.particles.add_particles(particles)
            potential = instance.get_potential_at_point(zero, x, zero, zero)

            self.assertAlmostRelativeEquals(potential0, potential, 8)
            instance.stop()
Beispiel #44
0
 def test22(self):
     hermite = Hermite()
     hermite.parameters.epsilon_squared = 0.0 | nbody_system.length**2
     
     particles = datamodel.Particles(2)
     particles.position = ([0,0,0], [1,0,0] )| nbody_system.length
     particles.velocity = ([-2,0,0], [2,0,0] )| nbody_system.speed
     particles.radius = 0| nbody_system.length
     particles.mass = 0.1| nbody_system.mass
             
     hermite.particles.add_particles(particles)
     hermite.stopping_conditions.out_of_box_detection.enable()
     hermite.parameters.stopping_conditions_out_of_box_size = 2 | nbody_system.length
     hermite.parameters.stopping_conditions_out_of_box_use_center_of_mass = False
     hermite.evolve_model(1 | nbody_system.time)
     print hermite.particles.x
     print hermite.particles.key, particles[1].key
     print hermite.stopping_conditions.out_of_box_detection.particles(0)
     self.assertTrue(hermite.stopping_conditions.out_of_box_detection.is_set())
     self.assertEquals(len(hermite.stopping_conditions.out_of_box_detection.particles(0)), 1)
     self.assertEquals(hermite.stopping_conditions.out_of_box_detection.particles(0)[0].key, particles[1].key)
     hermite.stop()
Beispiel #45
0
def evolve_system_with_massloss(particles, mass_sequence, time_sequence,
                                datahandler):
    """

    Parameters
    ----------
    particles: a two-body system 
    mass_sequence: sequence of masses
    time_sequence: sequence of times
    datahandler: HDF5HandlerAmuse context manager

    """
    h = datahandler

    intr = Hermite(nbody_to_si(particles.total_mass(), 1 | u.AU))
    intr.particles.add_particles(particles)

    h.append(particles[0].period0, "period0")

    for mass, time in zip(mass_sequence, time_sequence):

        intr.particles.move_to_center()
        intr.evolve_model(time)
        intr.particles[0].mass = mass

        h.append(intr.particles.center_of_mass(), "CM_position")
        h.append(intr.particles.center_of_mass_velocity(), "CM_velocity")
        h.append(intr.particles.position, "position")
        h.append(intr.particles.velocity, "velocity")
        h.append(intr.particles.mass, "mass")
        h.append(intr.particles.kinetic_energy(), "kinetic_energy")
        h.append(intr.particles.potential_energy(), "potential_energy")
        h.append(intr.get_total_energy(), "total_energy")
        h.append(time, "time")
        h.append(semimajoraxis_from_binary(intr.particles), "sma")
        h.append(eccentricity_from_binary(intr.particles), "eccentricity")

    intr.stop()
Beispiel #46
0
def simulate_small_cluster(
        number_of_stars=1000,
        end_time=40 | nbody_system.time,
        number_of_workers=1
        ):
    particles = new_plummer_model(number_of_stars)
    particles.scale_to_standard()

    gravity = Hermite(number_of_workers=number_of_workers)
    gravity.parameters.epsilon_squared = 0.15 | nbody_system.length ** 2

    gravity.particles.add_particles(particles)

    from_gravity_to_model = gravity.particles.new_channel_to(particles)

    time = 0.0 * end_time
    total_energy_at_t0 = gravity.kinetic_energy + gravity.potential_energy

    positions_at_different_times = []
    positions_at_different_times.append(particles.position)
    times = []
    times.append(time)

    print("evolving the model until t = " + str(end_time))
    while time < end_time:
        time += end_time / 3.0

        gravity.evolve_model(time)
        from_gravity_to_model.copy()

        positions_at_different_times.append(particles.position)
        times.append(time)
        print_log(time, gravity, particles, total_energy_at_t0)

    gravity.stop()

    return times, positions_at_different_times
Beispiel #47
0
def supernova_in_binary_nbody(M0, m0, a0, tsn):
    stars = make_circular_binary(M0, m0, a0)
    M, m, a, e, ta_out, inc, lan_out, aop_out = orbital_elements_from_binary(
        stars, G=constants.G)
    print "Initial binary: a=", a.in_(
        units.AU), "e=", e, "M=", stars[0].mass, "and m=", stars[1].mass

    converter = nbody_system.nbody_to_si(M+m, a)
    gravity = Hermite(converter)
    gravity.particles.add_particles(stars)

    print "Integrate binary to t=", tsn.in_(units.day)
    gravity.evolve_model(tsn)
    M, m, a, e, ta_out, inc, lan_out, aop_out = orbital_elements_from_binary(
        stars, G=constants.G)
    print "Pre supernova orbit: a=", a.in_(units.AU), "e=", e
    stars[0].mass *= 0.1
    print "Reduce stellar mass to: M=", stars[0].mass, "and m=", stars[1].mass

    v_kick = (0, 0, 0) | units.kms
    stars[0].velocity += v_kick
    gravity.evolve_model(2*tsn)
    M, m, a, e, ta_out, inc, lan_out, aop_out = orbital_elements_from_binary(
        stars, G=constants.G)
    print "Post supernova orbit: a=", a.in_(units.AU), "e=", e

    r0 = a
    a_ana = post_supernova_semimajor_axis(
        M0, m0, stars[0].mass, stars[1].mass, a, r0)
    e_ana = post_supernova_eccentricity(
        M0, m0, stars[0].mass, stars[1].mass, a, r0)
    print(
            "Analytic solution to post orbit orbital parameters: a=",
            a_ana, "e=", e_ana,
            )
    gravity.stop()
Beispiel #48
0
    def test4(self):
        convert_nbody = nbody_system.nbody_to_si(5.0 | units.kg, 10.0 | units.m)

        instance = Hermite(convert_nbody)
        instance.initialize_code()
        
        particles = datamodel.Particles(2)
        self.assertEquals(len(instance.particles), 0)
        
        particles.mass = [15.0, 30.0] | units.kg
        particles.radius =  [10.0, 20.0] | units.m
        particles.position = [[10.0, 20.0, 30.0], [20.0, 40.0, 60.0]] | units.m
        particles.velocity = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] | units.m / units.s

        
        instance.particles.add_particles(particles)
        self.assertEquals(len(instance.particles), 2)
        
        instance.particles.mass =  [17.0, 33.0] | units.kg
        
        
        self.assertEquals(instance.get_mass(0), 17.0| units.kg) 
        self.assertEquals(instance.get_mass(1), 33.0| units.kg)  
        instance.stop()
Beispiel #49
0
 def test20(self):
     convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
 
     hermite = Hermite(convert_nbody)
     hermite.initialize_code()
     hermite.parameters.epsilon_squared = 0.0 | units.AU**2
     hermite.parameters.end_time_accuracy_factor = 0.0
     hermite.parameters.is_time_reversed_allowed = True
     
     stars = self.new_system_of_sun_and_earth()
     earth = stars[1]
             
     hermite.particles.add_particles(stars)
     
     hermite.evolve_model(365.0 | units.day)
     hermite.particles.copy_values_of_all_attributes_to(stars)
     
     position_at_start = earth.position.value_in(units.AU)[0]
     position_after_full_rotation = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(position_at_start, position_after_full_rotation, 6)
     
     hermite.evolve_model(365.0 - (365.0 / 2) | units.day)
     
     hermite.particles.copy_values_of_all_attributes_to(stars)
     position_after_half_a_rotation_backward = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(-position_at_start, position_after_half_a_rotation_backward, 4)
             
     hermite.evolve_model(365.0 | units.day)
     
     position_at_start = earth.position.value_in(units.AU)[0]
     position_after_full_rotation = earth.position.value_in(units.AU)[0]
     self.assertAlmostRelativeEqual(position_at_start, position_after_full_rotation, 6)
     
     hermite.cleanup_code()
     
     hermite.stop()
Beispiel #50
0
    def test7(self):
        print "Test7: Testing effect of Hermite parameter epsilon_squared"
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 1.0 | units.AU)
        
        particles = datamodel.Particles(2)
        sun = particles[0]
        sun.mass = 1.0 | units.MSun
        sun.position = [0.0, 0.0, 0.0] | units.AU
        sun.velocity = [0.0, 0.0, 0.0] | units.AU / units.yr
        sun.radius = 1.0 | units.RSun

        earth = particles[1]
        earth.mass = 5.9736e24 | units.kg
        earth.radius = 6371.0 | units.km
        earth.position = [0.0, 1.0, 0.0] | units.AU
        earth.velocity = [2.0*numpy.pi, -0.0001, 0.0] | units.AU / units.yr
        
        initial_direction = math.atan((earth.velocity[0]/earth.velocity[1]))
        final_direction = []
        for log_eps2 in range(-9,10,2):
            instance = Hermite(convert_nbody)
            instance.parameters.end_time_accuracy_factor = 0.0
            instance.parameters.epsilon_squared = 10.0**log_eps2 | units.AU ** 2
            instance.particles.add_particles(particles)
            instance.commit_particles()
            instance.evolve_model(0.25 | units.yr)
            final_direction.append(math.atan((instance.particles[1].velocity[0]/
                instance.particles[1].velocity[1])))
            instance.stop()
        # Small values of epsilon_squared should result in normal earth-sun dynamics: rotation of 90 degrees
        self.assertAlmostEquals(abs(final_direction[0]), abs(initial_direction+math.pi/2.0), 2)
        # Large values of epsilon_squared should result in ~ no interaction
        self.assertAlmostEquals(final_direction[-1], initial_direction, 2)
        # Outcome is most sensitive to epsilon_squared when epsilon_squared = d(earth, sun)^2
        delta = [abs(final_direction[i+1]-final_direction[i]) for i in range(len(final_direction)-1)]
        self.assertEquals(delta[len(final_direction)//2 -1], max(delta))
Beispiel #51
0
    def test14(self):
        instance = Hermite()
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.00001 | nbody_system.length**2
        
        particles = datamodel.Particles(2)
        particles.mass = [1.0, 1.0] | nbody_system.mass
        particles.radius =  [0.0001, 0.0001] | nbody_system.length
        particles.position = [[0.0,0.0,0.0], [2.0,0.0,0.0]] | nbody_system.length
        particles.velocity = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] | nbody_system.speed
        instance.particles.add_particles(particles)
        
        zero = 0.0 | nbody_system.length
        fx, fy, fz = instance.get_gravity_at_point(zero, 1.0 | nbody_system.length, zero, zero)
        self.assertAlmostEqual(fx, 0.0 | nbody_system.acceleration, 6)
        self.assertAlmostEqual(fy, 0.0 | nbody_system.acceleration, 6)
        self.assertAlmostEqual(fz, 0.0 | nbody_system.acceleration, 6)

        for x in (0.25, 0.5, 0.75):
            x0 = x | nbody_system.length
            x1 = (2.0 - x) | nbody_system.length
            potential0 = instance.get_potential_at_point(zero, x0, zero, zero)
            potential1 = instance.get_potential_at_point(zero, x1, zero, zero)
            fx0, fy0, fz0 = instance.get_gravity_at_point(zero, x0, zero, zero)
            fx1, fy1, fz1 = instance.get_gravity_at_point(zero, x1, zero, zero)
            
            self.assertAlmostEqual(fy0, 0.0 | nbody_system.acceleration, 6)
            self.assertAlmostEqual(fz0, 0.0 | nbody_system.acceleration, 6)
            self.assertAlmostEqual(fy1, 0.0 | nbody_system.acceleration, 6)
            self.assertAlmostEqual(fz1, 0.0 | nbody_system.acceleration, 6)
            
            self.assertAlmostEqual(fx0, -1.0 * fx1, 5)
            fx = (-1.0 / (x0**2) + 1.0 / (x1**2)) * (1.0 | nbody_system.length ** 3 / nbody_system.time ** 2)
            self.assertAlmostEqual(fx, fx0, 2)
            self.assertAlmostEqual(potential0, potential1, 5)
        instance.stop()
Beispiel #52
0
    instance.commit_particles()

    channelp = instance.particles.new_channel_to(particles)
    
    start = 0 |units.yr
    end = 150 | units.yr
    step = 10|units.day

    timerange = VectorQuantity.arange(start, end, step)

    masses = []|units.MSun

    for i, time in enumerate(timerange):
        instance.evolve_model(time)
        channelp.copy()
        particles.savepoint(time)
        if (i % 220 == 0):
            instance.particles[0].mass = simulate_massloss(time)
        masses.append(instance.particles[0].mass)
 
    instance.stop()

    particle = particles[1]

    t, pos = particle.get_timeline_of_attribute_as_vector("position")
    distances = pos.lengths().as_quantity_in(units.AU)

    plot(timerange, distances , timerange, masses)

    native_plot.show()
Beispiel #53
0
    instance.particles.add_particles(particles)

    channelp = instance.particles.new_channel_to(particles)
    
    start = 0 |units.yr
    end = 150 | units.yr
    step = 10|units.day

    timerange = VectorQuantity.arange(start, end, step)

    masses = []|units.MSun

    for i, time in enumerate(timerange):
        instance.evolve_model(time)
        channelp.copy()
        particles.savepoint(time)
        if (i % 220 == 0):
            instance.particles[0].mass = simulate_massloss(time)
        masses.append(instance.particles[0].mass)
 
    instance.stop()

    particle = particles[1]

    t, pos = particle.get_timeline_of_attribute_as_vector("position")
    distances = pos.lengths().as_quantity_in(units.AU)

    plot(timerange, distances , timerange, masses)

    native_plot.show()
Beispiel #54
0
def make_effective_iso_potential_plot(gravity):
    """
	This function is copied from the amuse documentation.
	The last part has been altered to also plot our Moon Earth system
	and the test particles orbit.
	"""

    omega = (constants.G * gravity.particles.total_mass() /
             (5.0 | units.AU**3)).sqrt()
    center_of_mass = gravity.particles.center_of_mass()[:]
    plt.rcParams.update({'font.size': 30})
    figure = plt.figure(figsize=(12, 12))
    ax = plt.gca()
    ax.get_yaxis().get_major_formatter().set_useOffset(False)
    ax.minorticks_on()

    current_axes = plt.subplot(1, 1, 1)
    current_axes.set_aspect("equal", adjustable="box")
    lim = 6e5
    potential = effective_iso_potential_plot(gravity,
                                             omega,
                                             xlim=[-lim, lim] | units.km,
                                             ylim=[-lim, lim] | units.km,
                                             center_of_rotation=center_of_mass,
                                             fraction_screen_filled=0.85)

    # Simulation towards the Moon
    position = [329931, 0, 0] | units.km  # position of the lagrange point
    velocity = [0.14, 1.022, 0] | units.kms  # these parameters worked well
    gravity.particles.add_particles(create_testparticle(position, velocity))
    x, y, E_begin, E_end = integrate_orbit(
        1.85, gravity)  # towards the moon 1.85 days is sufficent

    #initialize integrator
    converter = nbody_system.nbody_to_si(1.0 | units.MSun, 1.0 | units.AU)
    gravity = Hermite(converter)
    gravity.particles.add_particles(Earth_Moon_system())
    gravity.particles.add_particles(create_testparticle(position, velocity))
    gravity.particles.velocity = gravity.particles.velocity * -1.
    x2, y2, E_begin2, E_end2 = integrate_orbit(
        10, gravity)  # towards the Earth 10 days is sufficient

    # make numpy arrays
    x = np.array(x)
    y = np.array(y)
    x2 = np.array(x2)
    y2 = np.array(y2)

    # Make plot
    plt.scatter([0], [0], color='b', s=25, label='Earth')
    plt.plot(x[1], y[1], color='r', lw=2, label='Moon')
    plt.plot(x[2], y[2], color='k', lw=2, label='Test particle')
    plt.plot(x2[1], y2[1], color='r', lw=2)
    plt.plot(x2[2], y2[2], color='k', lw=2)
    plt.legend(fontsize=12)

    # Plot langrangian point
    plt.scatter(329931, 0, marker='+', s=30, zorder=2, c='m')
    plt.text(329931, -31306, "$L_1$", size=20, zorder=3, color='m')

    # Stop integrator
    gravity.cleanup_code()
    gravity.stop()

    # Label and show
    xlabel('x')
    ylabel('y')
    plt.ticklabel_format(style='sci', axis='both', scilimits=(0, 0))
    plt.tight_layout()
    plt.savefig("lagrange_points.png")
    plt.show()  # show figure
def evolve_triple_with_wind(M1, M2, M3, Pora, Pin_0, ain_0, aout_0,
                            ein_0, eout_0, t_end, nsteps, scheme, integrator,
                            t_stellar, dt_se, dtse_fac, interp):

    import random
    from amuse.ext.solarsystem import get_position

    numpy.random.seed(42)

    print "Initial masses:", M1, M2, M3
    triple = Particles(3)
    triple[0].mass = M1
    triple[1].mass = M2
    triple[2].mass = M3
    stellar = SeBa()
    stellar.particles.add_particles(triple)
    channel_from_stellar = stellar.particles.new_channel_to(triple)

    # Evolve to t_stellar.
    
    stellar.evolve_model(t_stellar)
    channel_from_stellar.copy_attributes(["mass"])
    M1 = triple[0].mass
    M2 = triple[1].mass
    M3 = triple[2].mass
    print "t=", stellar.model_time.in_(units.Myr)
    print "M=", stellar.particles.mass.in_(units.MSun)
    print "R=", stellar.particles.radius.in_(units.RSun)
    print "L=", stellar.particles.luminosity.in_(units.LSun)
    print "T=", stellar.particles.temperature.in_(units.K)
    print "Mdot=", \
        -stellar.particles.wind_mass_loss_rate.in_(units.MSun/units.yr)

    # Start the dynamics.
    # Inner binary:
    
    tmp_stars = Particles(2)
    tmp_stars[0].mass = M1
    tmp_stars[1].mass = M2

    if Pora == 1:
        ain_0 = semimajor_axis(Pin_0, M1+M2)
    else:
        Pin_0 = orbital_period(ain_0, M1+M2)
    print 'Pin =', Pin_0
        
    print 'ain_0 =', ain_0
    print 'M1+M2 =', M1+M2
    print 'Pin_0 =', Pin_0.value_in(units.day), '[day]'
    #print 'semi:', semimajor_axis(Pin_0, M1+M2).value_in(units.AU), 'AU'
    #print 'period:', orbital_period(ain_0, M1+M2).value_in(units.day), '[day]'
    
    dt_init = 0.01*Pin_0
    ma = 180
    inc = 60
    aop = 180
    lon = 0
    r,v = get_position(M1, M2, ein_0, ain_0, ma, inc, aop, lon, dt_init)
    tmp_stars[1].position = r
    tmp_stars[1].velocity = v
    tmp_stars.move_to_center()

    # Outer binary:
    
    r,v = get_position(M1+M2, M3, eout_0, aout_0, 0, 0, 0, 0, dt_init)
    tertiary = Particle()
    tertiary.mass = M3
    tertiary.position = r
    tertiary.velocity = v
    tmp_stars.add_particle(tertiary)
    tmp_stars.move_to_center()

    triple.position = tmp_stars.position
    triple.velocity = tmp_stars.velocity

    Mtriple = triple.mass.sum()
    Pout = orbital_period(aout_0, Mtriple)

    print "T=", stellar.model_time.in_(units.Myr)
    print "M=", stellar.particles.mass.in_(units.MSun)
    print "Pout=", Pout.in_(units.Myr)
    print 'tK =', ((M1+M2)/M3)*Pout**2*(1-eout_0**2)**1.5/Pin_0

    converter = nbody_system.nbody_to_si(triple.mass.sum(), aout_0)

    if integrator == 0:
        gravity = Hermite(converter)
        gravity.parameters.timestep_parameter = 0.01
    elif integrator == 1:
        gravity = SmallN(converter)
        gravity.parameters.timestep_parameter = 0.01
        gravity.parameters.full_unperturbed = 0
    elif integrator == 2:
        gravity = Huayno(converter)
        gravity.parameters.inttype_parameter = 20
        gravity.parameters.timestep = (1./256)*Pin_0
    else:
        gravity = symple(converter)
        gravity.parameters.integrator = 10
        #gravity.parameters.timestep_parameter = 0.
        gravity.parameters.timestep = (1./128)*Pin_0

    print gravity.parameters

    gravity.particles.add_particles(triple)
    channel_from_framework_to_gd = triple.new_channel_to(gravity.particles)
    channel_from_gd_to_framework = gravity.particles.new_channel_to(triple)
    
    Etot_init = gravity.kinetic_energy + gravity.potential_energy
    Etot_prev = Etot_init

    gravity.particles.move_to_center()

    # Note: time = t_diag = 0 at the start of the dynamical integration.
    
    dt_diag = t_end/float(nsteps)
    t_diag = dt_diag
    time = 0.0 | t_end.unit
    t_se = t_stellar + time

    print 't_end =', t_end
    print 'dt_diag =', dt_diag

    ain, ein, aout, eout = get_orbital_elements_of_triple(triple)
    print "Triple elements t=",  time,  \
        "inner:", triple[0].mass, triple[1].mass, ain, ein, \
        "outer:", triple[2].mass, aout, eout

    t = [time.value_in(units.Myr)]
    Mtot = triple.mass.sum()
    mtot = [Mtot.value_in(units.MSun)]
    smai = [ain/ain_0] 
    ecci = [ein/ein_0]
    smao = [aout/aout_0] 
    ecco = [eout/eout_0]

    if interp:
        
        # Create arrays of stellar times and masses for interpolation.

        times = [time]
        masses = [triple.mass.copy()]
        while time < t_end:
            time += dt_se
            stellar.evolve_model(t_stellar+time)
            channel_from_stellar.copy_attributes(["mass"])
            times.append(time)
            masses.append(triple.mass.copy())

        time = 0.0 | t_end.unit
        print '\ntimes:', times, '\n'

    # Evolve the system.
    
    def advance_stellar(t_se, dt):
        E0 = gravity.kinetic_energy + gravity.potential_energy
        t_se += dt

        if interp:
            t = t_se-t_stellar
            i = int(t/dt_se)
            mass = masses[i] + (t-times[i])*(masses[i+1]-masses[i])/dt_se
            triple.mass = mass
            #print 't_se =', t_se, 'masses =', mass
        else:
            stellar.evolve_model(t_se)
            channel_from_stellar.copy_attributes(["mass"])

        channel_from_framework_to_gd.copy_attributes(["mass"])
        return t_se, gravity.kinetic_energy + gravity.potential_energy - E0

    def advance_gravity(tg, dt):
        tg += dt
        gravity.evolve_model(tg)
        channel_from_gd_to_framework.copy()
        return tg

    while time < t_end:

        if scheme == 1:

            # Advance to the next diagnostic time.
            
            dE_se = zero
            dt = t_diag - time

            if dt > 0|dt.unit:
                time = advance_gravity(time, dt)

        elif scheme == 2:
            
            # Derive dt from Pin using dtse_fac.
            
            dt = dtse_fac*Pin_0
            if time + dt > t_diag: dt = t_diag - time

            if dt > 0|dt.unit:
                t_se, dE_se = advance_stellar(t_se, dt)
                time = advance_gravity(time, dt)
            
        elif scheme == 3:
            
            # Derive dt from Pin using dtse_fac.
            
            dt = dtse_fac*Pin_0
            if time + dt > t_diag: dt = t_diag - time

            if dt > 0|dt.unit:
                time = advance_gravity(time, dt)
                t_se, dE_se = advance_stellar(t_se, dt)
            
        elif scheme == 4:
            
            # Derive dt from Pin using dtse_fac.
            
            dt = dtse_fac*Pin_0
            if time + dt > t_diag: dt = t_diag - time

            if dt > 0|dt.unit:
                t_se, dE_se = advance_stellar(t_se, 0.5*dt)
                time = advance_gravity(time, dt)
                t_se, dE_se2 = advance_stellar(t_se, 0.5*dt)
                dE_se += dE_se2
            
        elif scheme == 5:

            # Use the specified dt_se.
            
            dE_se = zero
            dt = dt_se
            if time + dt > t_diag: dt = t_diag - time

            if dt > 0|dt.unit:

                # For use with symple only: set up average mass loss.
    
                channel_from_stellar.copy_attributes(["mass"])
                m0 = triple.mass.copy()
                stellar.evolve_model(t_se+dt)
                channel_from_stellar.copy_attributes(["mass"])
                t_se = stellar.model_time
                m1 = triple.mass
                dmdt = (m1-m0)/dt
                for i in range(len(dmdt)):
                    gravity.set_dmdt(i, dmdt[i])

                time = advance_gravity(time, dt)

        else:

            print 'unknown option'
            sys.exit(0)

        if time >= t_diag:
            
            t_diag = time + dt_diag

            Ekin = gravity.kinetic_energy 
            Epot = gravity.potential_energy
            Etot = Ekin + Epot
            dE = Etot_prev - Etot
            Mtot = triple.mass.sum()
            print "T=", time, 
            print "M=", Mtot, "(dM[SE]=", Mtot/Mtriple, ")",
            print "E= ", Etot, "Q= ", Ekin/Epot,
            print "dE=", (Etot_init-Etot)/Etot, "ddE=", (Etot_prev-Etot)/Etot, 
            print "(dE[SE]=", dE_se/Etot, ")"
            Etot_init -= dE
            Etot_prev = Etot
            ain, ein, aout, eout = get_orbital_elements_of_triple(triple)
            print "Triple elements t=",  t_stellar + time,  \
                "inner:", triple[0].mass, triple[1].mass, ain, ein, \
                "outer:", triple[2].mass, aout, eout

            t.append(time.value_in(units.yr))
            mtot.append(Mtot.value_in(units.MSun))
            smai.append(ain/ain_0)
            ecci.append(ein/ein_0)
            smao.append(aout/aout_0)
            ecco.append(eout/eout_0)

            if eout > 1 or aout <= zero:
                print "Binary ionized or merged"
                break

    gravity.stop()
    stellar.stop()

    return t, mtot, smai, ecci, smao, ecco
Beispiel #56
0
    cluster.particles.add_particles(particles)

    # set up bridge; cluster is evolved under influence of the galaxy
    sys = bridge(verbose=False)
    sys.add_system(cluster, (galaxy, ), False)

    # evolve and make plots
    times = units.Myr([0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4])
    f = pyplot.figure(figsize=(16, 8))

    for i, t in enumerate(times):
        sys.evolve_model(t, timestep=timestep)
        print("Evolved the system to time %f" % t)

        x = sys.particles.x.value_in(units.parsec)
        y = sys.particles.y.value_in(units.parsec)

        subplot = f.add_subplot(2, 4, i + 1)
        subplot.plot(x, y, 'r .')
        subplot.plot([0.], [0.], 'b +')
        subplot.set_xlim(-60, 60)
        subplot.set_ylim(-60, 60)
        subplot.set_title(t)
        if i == 7:
            subplot.set_xlabel('parsec')

    cluster.stop()
    galaxy.stop()
    pyplot.show()
#    pyplot.savefig('test.eps')
def evolve_triple_with_wind(M1, M2, M3, Pora, Pin_0, ain_0, aout_0,
                            ein_0, eout_0, t_end, nsteps, scheme, dtse_fac):

    import random
    from amuse.ext.solarsystem import get_position

    print "Initial masses:", M1, M2, M3
    t_stellar = 4.0|units.Myr
    triple = Particles(3)
    triple[0].mass = M1
    triple[1].mass = M2
    triple[2].mass = M3
    stellar = SeBa()
    stellar.particles.add_particles(triple)
    channel_from_stellar = stellar.particles.new_channel_to(triple)
    stellar.evolve_model(t_stellar)
    channel_from_stellar.copy_attributes(["mass"])
    M1 = triple[0].mass
    M2 = triple[1].mass
    M3 = triple[2].mass
    print "T=", stellar.model_time.in_(units.Myr)
    print "M=", stellar.particles.mass.in_(units.MSun)
    print "Masses at time T:", M1, M2, M3
    
    # Inner binary
    
    tmp_stars = Particles(2)
    tmp_stars[0].mass = M1
    tmp_stars[1].mass = M2

    if Pora == 1:
        ain_0 = semimajor_axis(Pin_0, M1+M2)
    else:
        Pin_0 = orbital_period(ain_0, M1+M2)
        
    print 'ain_0 =', ain_0
    print 'M1+M2 =', M1+M2
    print 'Pin_0 =', Pin_0.value_in(units.day), '[day]'
    #print 'semi:', semimajor_axis(Pin_0, M1+M2).value_in(units.AU), 'AU'
    #print 'period:', orbital_period(ain_0, M1+M2).value_in(units.day), '[day]'
    
    dt = 0.1*Pin_0
    ma = 180
    inc = 30
    aop = 180
    lon = 0
    r, v = get_position(M1, M2, ein_0, ain_0, ma, inc, aop, lon, dt)
    tmp_stars[1].position = r
    tmp_stars[1].velocity = v
    tmp_stars.move_to_center()

    # Outer binary
    
    r, v = get_position(M1+M2, M3, eout_0, aout_0, 0, 0, 0, 0, dt)
    tertiary = Particle()
    tertiary.mass = M3
    tertiary.position = r
    tertiary.velocity = v
    tmp_stars.add_particle(tertiary)
    tmp_stars.move_to_center()

    triple.position = tmp_stars.position
    triple.velocity = tmp_stars.velocity

    Mtriple = triple.mass.sum()
    Pout = orbital_period(aout_0, Mtriple)

    print "T=", stellar.model_time.in_(units.Myr)
    print "M=", stellar.particles.mass.in_(units.MSun)
    print "Pout=", Pout.in_(units.Myr)

    converter = nbody_system.nbody_to_si(triple.mass.sum(), aout_0)
    gravity = Hermite(converter)
    gravity.particles.add_particles(triple)

    channel_from_framework_to_gd = triple.new_channel_to(gravity.particles)
    channel_from_gd_to_framework = gravity.particles.new_channel_to(triple)
    
    Etot_init = gravity.kinetic_energy + gravity.potential_energy
    Etot_prev = Etot_init

    gravity.particles.move_to_center()

    time = 0.0 | t_end.unit
    ts = t_stellar + time

    ain, ein, aout, eout = get_orbital_elements_of_triple(triple)
    print "Triple elements t=",  time,  \
        "inner:", triple[0].mass, triple[1].mass, ain, ein, \
        "outer:", triple[2].mass, aout, eout

    dt_diag = t_end/float(nsteps)
    t_diag = dt_diag

    t = [time.value_in(units.Myr)] 
    smai = [ain/ain_0] 
    ecci = [ein/ein_0]
    smao = [aout/aout_0] 
    ecco = [eout/eout_0]
    ain = ain_0

    def advance_stellar(ts, dt):
        E0 = gravity.kinetic_energy + gravity.potential_energy
        ts += dt
        stellar.evolve_model(ts)
        channel_from_stellar.copy_attributes(["mass"])
        channel_from_framework_to_gd.copy_attributes(["mass"])
        return ts, gravity.kinetic_energy + gravity.potential_energy - E0

    def advance_gravity(tg, dt):
        tg += dt
        gravity.evolve_model(tg)
        channel_from_gd_to_framework.copy()
        return tg

    while time < t_end:

        Pin = orbital_period(ain, triple[0].mass+triple[1].mass)
        dt = dtse_fac*Pin
        dt *= random.random()

        if scheme == 1:
            
            ts, dE_se = advance_stellar(ts, dt)
            time = advance_gravity(time, dt)
            
        elif scheme == 2:
            
            time = advance_gravity(time, dt)
            ts, dE_se = advance_stellar(ts, dt)
            
        else:

            dE_se = zero
            #ts, dE_se = advance_stellar(ts, dt/2)
            time = advance_gravity(time, dt)
            #ts, dE = advance_stellar(ts, dt/2)
            #dE_se += dE

        if time >= t_diag:
            
            t_diag = time + dt_diag

            Ekin = gravity.kinetic_energy 
            Epot = gravity.potential_energy
            Etot = Ekin + Epot
            dE = Etot_prev - Etot
            Mtot = triple.mass.sum()
            print "T=", time, 
            print "M=", Mtot, "(dM[SE]=", Mtot/Mtriple, ")",
            print "E= ", Etot, "Q= ", Ekin/Epot,
            print "dE=", (Etot_init-Etot)/Etot, "ddE=", (Etot_prev-Etot)/Etot, 
            print "(dE[SE]=", dE_se/Etot, ")"
            Etot_init -= dE
            Etot_prev = Etot
            ain, ein, aout, eout = get_orbital_elements_of_triple(triple)
            print "Triple elements t=",  (4|units.Myr) + time,  \
                "inner:", triple[0].mass, triple[1].mass, ain, ein, \
                "outer:", triple[2].mass, aout, eout

            t.append(time.value_in(units.Myr))
            smai.append(ain/ain_0)
            ecci.append(ein/ein_0)
            smao.append(aout/aout_0)
            ecco.append(eout/eout_0)

            if eout > 1.0 or aout <= zero:
                print "Binary ionized or merged"
                break

    gravity.stop()
    stellar.stop()

    return t, smai, ecci, smao, ecco
Beispiel #58
0
    def test2(self):
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)

        bhtree = BHTree(convert_nbody)
        bhtree.initialize_code()
        bhtree.eps2_for_gravity = 0.001
            
        bhtree_particles = self.new_system_sun_and_earth()
        bhtree.particles.add_particles(bhtree_particles)
        
        if bhtree.legacy_interface.channel_type == 'mpi':
            from mpi4py import MPI
            if not MPI.Query_thread() == MPI.THREAD_MULTIPLE:
                bhtree.stop()
                self.skip("can only test parallel with multiple thread support in mpi implementation")
            
        
        hermite = Hermite(convert_nbody)
        hermite.dt_dia = 5000
        hermite.commit_parameters()
            
        hermite_particles = self.new_system_sun_and_earth()
        hermite.particles.add_particles(hermite_particles)
        
        thread1 = threading.Thread(target = self.evolve_model_unit_day, args = (bhtree, bhtree_particles, 10))
        thread2 = threading.Thread(target = self.evolve_model_unit_day, args = (hermite, hermite_particles, 10))
        
        thread1.start()
        thread2.start()
        
        thread1.join()
        thread2.join()
        
        
        
        if HAS_MATPLOTLIB:
            figure = pyplot.figure()
            plot = figure.add_subplot(1,1,1)
            
            earth = bhtree_particles[1]
            x_points = earth.get_timeline_of_attribute("x")
            y_points = earth.get_timeline_of_attribute("y")
            x_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), x_points)
            y_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), y_points)
            
            plot.scatter(x_points_in_AU,y_points_in_AU, color = "b", marker = 'o')
            
            earth = hermite_particles[1]
            x_points = earth.get_timeline_of_attribute("x")
            y_points = earth.get_timeline_of_attribute("y")
            x_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), x_points)
            y_points_in_AU = map(lambda (t,x) : x.value_in(units.AU), y_points)
            
            plot.scatter(x_points_in_AU,y_points_in_AU, color = "g", marker = 'o')
            
            plot.set_xlim(-1.5, 1.5)
            plot.set_ylim(-1.5, 1.5)
            
            test_results_path = self.get_path_to_results()
            output_file = os.path.join(test_results_path, "parallel-earth-sun.svg")
            figure.savefig(output_file)
                    
        bhtree.stop()
        hermite.stop()
        bhtree.stop()