def test_jtr_file_one(self):
        import argparse, sys
        sys.argv = [
            'demo_guess_count_file.py', '-w',
            '../data/wordlists/test_demo_file_JtR.lst', '-r',
            '../data/rulelists/test_demo_file_JtR.rule', '-p',
            '../data/testsets/test_demo_file_JtR1.txt', '-s', 'j'
        ]
        args = setup_args()  # set up args
        parse_args(args)

        self.run_guess_count()
Beispiel #2
0
def main():

    args = setup_args() # set up args

    try:
        parse_args(args) # parse args

    except:
        raise

    print("Your Running Configuration: {}\n".format(RUNTIME_CONFIG.short_config_string()))

    start_processing()
    def test_hc_file_three(self):
        import argparse, sys
        sys.argv = [
            'demo_guess_count_file.py', '-w',
            '../data/wordlists/test_demo_file_HC.lst', '-r',
            '../data/rulelists/test_demo_file_HC.rule', '-p',
            '../data/testsets/test_demo_file_HC3.txt', '-s', 'h'
        ]
        args = setup_args()  # set up args
        parse_args(args)
        RUNTIME_CONFIG['batch_size_of_words'] = 1024 * 1024

        self.run_guess_count()
from sklearn.preprocessing import LabelEncoder
from sklearn.cross_validation import train_test_split
from sklearn.utils import shuffle

from models import inception_v3
from models import ST_ResNet_FullPre, ResNet_FullPre, ResNet_FullPre_Wide
from utils import load_train_cv, batch_iterator_train, batch_iterator_valid, load_pseudo
from crossvalidation import load_cv_fold

from matplotlib import pyplot
import warnings
warnings.filterwarnings("ignore")

import argparsing
args, unknown_args = argparsing.parse_args()

#TODO: Get pixel mean or Whatever preproc values they used for GoogLeNet and ImageNet

# training params
experiment_label = args.label
PIXELS = 299
ITERS = args.epochs
BATCHSIZE = args.batchsize

LR_SCHEDULE = {
    0: 0.0001,
    10: 0.00001,
    20: 0.000001
}