def test_jtr_file_one(self): import argparse, sys sys.argv = [ 'demo_guess_count_file.py', '-w', '../data/wordlists/test_demo_file_JtR.lst', '-r', '../data/rulelists/test_demo_file_JtR.rule', '-p', '../data/testsets/test_demo_file_JtR1.txt', '-s', 'j' ] args = setup_args() # set up args parse_args(args) self.run_guess_count()
def main(): args = setup_args() # set up args try: parse_args(args) # parse args except: raise print("Your Running Configuration: {}\n".format(RUNTIME_CONFIG.short_config_string())) start_processing()
def test_hc_file_three(self): import argparse, sys sys.argv = [ 'demo_guess_count_file.py', '-w', '../data/wordlists/test_demo_file_HC.lst', '-r', '../data/rulelists/test_demo_file_HC.rule', '-p', '../data/testsets/test_demo_file_HC3.txt', '-s', 'h' ] args = setup_args() # set up args parse_args(args) RUNTIME_CONFIG['batch_size_of_words'] = 1024 * 1024 self.run_guess_count()
from sklearn.preprocessing import LabelEncoder from sklearn.cross_validation import train_test_split from sklearn.utils import shuffle from models import inception_v3 from models import ST_ResNet_FullPre, ResNet_FullPre, ResNet_FullPre_Wide from utils import load_train_cv, batch_iterator_train, batch_iterator_valid, load_pseudo from crossvalidation import load_cv_fold from matplotlib import pyplot import warnings warnings.filterwarnings("ignore") import argparsing args, unknown_args = argparsing.parse_args() #TODO: Get pixel mean or Whatever preproc values they used for GoogLeNet and ImageNet # training params experiment_label = args.label PIXELS = 299 ITERS = args.epochs BATCHSIZE = args.batchsize LR_SCHEDULE = { 0: 0.0001, 10: 0.00001, 20: 0.000001 }