Beispiel #1
0
def virial_radius(logMhalo, redshift, delta=200., rhocrit=True,
                    BryanNorman=False, WMAP=False, COSHalos=False):
    """Calculate the virial radius of a galaxy.

     --- Inputs: ---
      logMhalo: Halo mass(es).
      redshift: Galaxy redshift
      delta=200: Overdensity (Default=200)
      rhocrit: Use the critical density (Default=True); alternately the mean density of the universe.
      WMAP: Use WMAP9 cosmology. (Default=False)
      BryanNorman: Use the Bryan & Norman (1998) scaling (Default=False)
      COSHalos: Use the COS-Halos assumptions (Default=False)

    """

    import numpy as np
    import astropy.units as u
    import astropy.constants as c

    # Set some terms based on the COSHalos flag, which matches the calculations
    # from the COS-Halos work (Prochaska+ 2017).
    #
    # This overrides the other user-set flags.
    if COSHalos:
        BryanNorman=True
        WMAP=True
        rhocrit=True

    # Choose the cosmology. Default is Plank15.
    if WMAP:
        from astropy.cosmology import WMAP9 as cosmo
    else:
        from astropy.cosmology import Planck15 as cosmo

    # Use the Bryan & Norman (2008) definition of Rvir? Default: False
    #
    # This overrides user-set flags for delta and rhocrit.
    if BryanNorman:
        # Overdensity depends on redshift:
        x = cosmo.Om(redshift)-1.
        delta = (18.*np.pi**2+82.*x-39.*x**2)

        # Also assume critical density scaling:
        rhocrit = True


    # Choose whether to scale by mean or critical density. Default: Critical
    if rhocrit == True:
        rho = cosmo.critical_density(redshift)
    else:
        rho = cosmo.Om(redshift)*cosmo.critical_density(redshift)


    # Linear halo mass (requires logMhalo in numpy array for calculations.
    Mhalo = (10.**np.array(logMhalo))*u.M_sun
    # Calculate the virial radius.
    Rvir3 = (3./(4.*np.pi))*(Mhalo/(delta*rho.to('Msun/kpc3')))
    Rvir = (Rvir3)**(1./3.)

    return Rvir
Beispiel #2
0
    def test_delta_vir(self):
        """ Compute the calculated value of `~halotools.empirical_models.profile_helpers.delta_vir`
        at high-redshift where :math:`\\Omega_{\\rm m} = 1` should be a good approximation, and
        compare it to the analytical top-hat collapse result in this regime.
        """
        bn98_result = delta_vir(WMAP9, 10.0)
        assert np.allclose(bn98_result, 18. * np.pi**2, rtol=0.01)

        # Choose a high-redshift where Om = 1 is a good approximation
        z = 10
        rho_crit = WMAP9.critical_density(z)
        rho_crit = rho_crit.to(u.Msun / u.Mpc**3).value / WMAP9.h**2
        rho_m = WMAP9.Om(z) * rho_crit
        wmap9_delta_vir_z10 = density_threshold(WMAP9, z, 'vir') / rho_m

        assert np.allclose(wmap9_delta_vir_z10, bn98_result, rtol=0.01)
def test_delta_vir():
    r""" Compute the calculated value of `~halotools.empirical_models.halo_boundary_functions.delta_vir`
    at high-redshift where :math:`\Omega_{\rm m} = 1` should be a good approximation, and
    compare it to the analytical top-hat collapse result in this regime.
    """
    bn98_result = delta_vir(WMAP9, 10.0)
    assert np.allclose(bn98_result, 18.*np.pi**2, rtol=0.01)

    # Choose a high-redshift where Om = 1 is a good approximation
    z = 10
    rho_crit = WMAP9.critical_density(z)
    rho_crit = rho_crit.to(u.Msun/u.Mpc**3).value/WMAP9.h**2
    rho_m = WMAP9.Om(z)*rho_crit
    wmap9_delta_vir_z10 = density_threshold(WMAP9, z, 'vir')/rho_m

    assert np.allclose(wmap9_delta_vir_z10, bn98_result, rtol=0.01)
Beispiel #4
0
    def test_density_threshold(self):
        """ Verify that the `~halotools.empirical_models.profile_helpers.density_threshold`
        method returns the correct multiple of the appropriate density contrast over a range
        of redshifts and cosmologies.

        """

        zlist = [0, 1, 5, 10]
        for z in zlist:
            for cosmo in (WMAP9, Planck13):
                rho_crit = WMAP9.critical_density(z)
                rho_crit = rho_crit.to(u.Msun / u.Mpc**3).value / WMAP9.h**2
                rho_m = WMAP9.Om(z) * rho_crit

                wmap9_200c = density_threshold(WMAP9, z, '200c') / rho_crit
                assert np.allclose(wmap9_200c, 200.0, rtol=0.01)

                wmap9_2500c = density_threshold(WMAP9, z, '2500c') / rho_crit
                assert np.allclose(wmap9_2500c, 2500.0, rtol=0.01)

                wmap9_200m = density_threshold(WMAP9, z, '200m') / rho_m
                assert np.allclose(wmap9_200m, 200.0, rtol=0.01)
def test_density_threshold():
    r""" Verify that the `~halotools.empirical_models.halo_boundary_functions.density_threshold`
    method returns the correct multiple of the appropriate density contrast over a range
    of redshifts and cosmologies.

    """

    zlist = [0, 1, 5, 10]
    for z in zlist:
        for cosmo in (WMAP9, Planck13):
            rho_crit = WMAP9.critical_density(z)
            rho_crit = rho_crit.to(u.Msun/u.Mpc**3).value/WMAP9.h**2
            rho_m = WMAP9.Om(z)*rho_crit

            wmap9_200c = density_threshold(WMAP9, z, '200c')/rho_crit
            assert np.allclose(wmap9_200c, 200.0, rtol=0.01)

            wmap9_2500c = density_threshold(WMAP9, z, '2500c')/rho_crit
            assert np.allclose(wmap9_2500c, 2500.0, rtol=0.01)

            wmap9_200m = density_threshold(WMAP9, z, '200m')/rho_m
            assert np.allclose(wmap9_200m, 200.0, rtol=0.01)
Beispiel #6
0
import numpy as np
from astropy.cosmology import WMAP9 as cosmo
from astropy import units as u

'''
This code calculate the half-mode mass of WDM
'''
wdm_m = 2.0 # keV
Owdm = cosmo.Om0
h=cosmo.h
mu=1.12
rho = cosmo.critical_density(0) # g/cm^3
rho = rho.to(u.Msun/u.Mpc**3)

alpha = 0.049*(wdm_m)**(-1.11)*(Owdm/0.25)**0.11*(h/0.7)**1.22*(u.Mpc/u.h) # Mpc h-1
Mfs = 4.0*np.pi/3.0*rho*(alpha/2.0)**3
Mhm = 2.7e3*Mfs

print Mhm*h**3
Beispiel #7
0
'''
Defines mass profiles
'''

import os
import numpy as np
import astropy.units as u
import astropy.constants as const
import pandas as pd

from scipy.integrate import cumtrapz
from scipy.interpolate import UnivariateSpline

from astropy.cosmology import WMAP9 as cosmo
RHO_CRIT = cosmo.critical_density(0.)

class MassProfile:

    def __init__(self, profiletype, **kwargs):
        self.type = profiletype
        self.kwargs = kwargs

    def M(self):
        raise NotImplementedError("""Woops! You need to specify an actual halo
        type before you can get the mass profile!""")
        pass

    def Mprime(self, bs, profile):
        mprime = np.gradient(profile, bs, edge_order=2)
        self.mprime = mprime
        return mprime
Beispiel #8
0
def crit_density(z):  #Msun/h /kpc^3
    gcm3_to_msunkpc3 = 1.477543e31
    density = cosmo.critical_density(z).value * gcm3_to_msunkpc3
    #print "crit desity(%f): %f Msun/kpc^3"%(z,density)
    #print "crit desity(%f): %e Msun/kpc^3"%(z,density*1000**3/cosmo.h**2)
    return density
Beispiel #9
0
def get_box_density(dataset):
    """ gets the total box density in Msun / Mpc***3 for a yt dataset"""
    return WMAP9.critical_density(0).value * \
                    (3.086e24)**3 / 1.989e33 * dataset.omega_matter \
                    * YTArray(1., 'Msun') / YTArray(1., 'Mpc')**3