Beispiel #1
0
def test_predictor_fit(key):
    train_data = load_pd.load(DATA_INFO[key]['train'])
    dev_data = load_pd.load(DATA_INFO[key]['dev'])
    label = DATA_INFO[key]['label']
    eval_metric = DATA_INFO[key]['metric']
    verify_proba = DATA_INFO[key]['verify_proba']

    rng_state = np.random.RandomState(123)
    train_perm = rng_state.permutation(len(train_data))
    valid_perm = rng_state.permutation(len(dev_data))
    train_data = train_data.iloc[train_perm[:100]]
    dev_data = dev_data.iloc[valid_perm[:10]]
    predictor = TextPredictor(label=label, eval_metric=eval_metric)
    predictor.fit(train_data,
                  hyperparameters=get_test_hyperparameters(),
                  time_limit=30,
                  seed=123)
    dev_score = predictor.evaluate(dev_data)
    verify_predictor_save_load(predictor, dev_data, verify_proba=verify_proba)

    # Test for continuous fit
    predictor.fit(train_data,
                  hyperparameters=get_test_hyperparameters(),
                  time_limit=30,
                  seed=123)
    verify_predictor_save_load(predictor, dev_data, verify_proba=verify_proba)

    # Saving to folder, loading the saved model and call fit again (continuous fit)
    with tempfile.TemporaryDirectory() as root:
        predictor.save(root)
        predictor = TextPredictor.load(root)
        predictor.fit(train_data,
                      hyperparameters=get_test_hyperparameters(),
                      time_limit=30,
                      seed=123)
Beispiel #2
0
def test_standalone_with_emoji():
    import tempfile
    from unittest import mock

    requests_gag = mock.patch(
        'requests.Session.request',
        mock.Mock(side_effect=RuntimeError(
            'Please use the `responses` library to mock HTTP in your tests.'
        ))
    )

    data = []
    for i in range(50 * 3):
        data.append(('😁' * (i + 1), 'grin'))

    for i in range(30 * 3):
        data.append(('😃' * (i + 1), 'smile'))

    for i in range(20 * 3):
        data.append(('😉' * (i + 1), 'wink'))
    df = pd.DataFrame(data, columns=['data', 'label'])
    predictor = TextPredictor(label='label', verbosity=3)
    predictor.fit(
        df,
        hyperparameters=get_test_hyperparameters(),
        time_limit=5,
        seed=123,
    )

    predictions1 = predictor.predict(df, as_pandas=False)
    with tempfile.TemporaryDirectory() as root:
        predictor.save(root, standalone=True)
        with requests_gag:  # no internet connections
            offline_predictor = TextPredictor.load(root)
            predictions2 = offline_predictor.predict(df, as_pandas=False)

    npt.assert_equal(predictions1, predictions2)
Beispiel #3
0
class TextPredictorModel(AbstractModel):
    nn_model_name = 'text_nn'

    def __init__(self, **kwargs):
        """Wrapper of autogluon.text.TextPredictor.

        The features can be a mix of
        - text column
        - categorical column
        - numerical column

        The labels can be categorical or numerical.

        Parameters
        ----------
        path
            The directory to store the modeling outputs.
        name
            Name of subdirectory inside path where model will be saved.
        problem_type
            Type of problem that this model will handle.
            Valid options: ['binary', 'multiclass', 'regression'].
        eval_metric
            The evaluation metric.
        num_classes
            The number of classes.
        stopping_metric
            The stopping metric.
        model
            The internal model object.
        hyperparameters
            The hyperparameters of the model
        features
            Names of the features.
        feature_metadata
            The feature metadata.
        """
        super().__init__(**kwargs)
        self._label_column_name = None
        self._load_model = None  # Whether to load inner model when loading.

    def _get_default_auxiliary_params(self) -> dict:
        default_auxiliary_params = super()._get_default_auxiliary_params()
        extra_auxiliary_params = dict(get_features_kwargs=dict(
            valid_raw_types=[R_INT, R_FLOAT, R_CATEGORY, R_OBJECT],
            invalid_special_types=[
                S_TEXT_NGRAM, S_TEXT_AS_CATEGORY, S_TEXT_SPECIAL
            ],
        ), )
        default_auxiliary_params.update(extra_auxiliary_params)
        return default_auxiliary_params

    @classmethod
    def _get_default_ag_args(cls) -> dict:
        default_ag_args = super()._get_default_ag_args()
        extra_ag_args = {'valid_stacker': False}
        default_ag_args.update(extra_ag_args)
        return default_ag_args

    def _set_default_params(self):
        super()._set_default_params()
        try_import_autogluon_text()
        from autogluon.text import ag_text_presets
        self.params = ag_text_presets.create('default')

    def _fit(self,
             X: pd.DataFrame,
             y: pd.Series,
             X_val: Optional[pd.DataFrame] = None,
             y_val: Optional[pd.Series] = None,
             time_limit: Optional[int] = None,
             sample_weight=None,
             **kwargs):
        """The internal fit function

        Parameters
        ----------
        X
            Features of the training dataset
        y
            Labels of the training dataset
        X_val
            Features of the validation dataset
        y_val
            Labels of the validation dataset
        time_limit
            The time limits for the fit function
        kwargs
            Other keyword arguments

        """
        try_import_mxnet()
        try_import_autogluon_text()
        from autogluon.text import TextPredictor

        # Decide name of the label column
        if 'label' in X.columns:
            label_col_id = 0
            while True:
                self._label_column_name = 'label{}'.format(label_col_id)
                if self._label_column_name not in X.columns:
                    break
                label_col_id += 1
        else:
            self._label_column_name = 'label'
        X_train = self.preprocess(X, fit=True)
        if X_val is not None:
            X_val = self.preprocess(X_val)
        # Get arguments from kwargs
        verbosity = kwargs.get('verbosity', 2)
        num_cpus = kwargs.get('num_cpus', None)
        num_gpus = kwargs.get('num_gpus', None)
        if sample_weight is not None:  # TODO: support
            logger.log(
                15,
                "sample_weight not yet supported for TextPredictorModel, this model will ignore them in training."
            )

        X_train.insert(len(X_train.columns), self._label_column_name, y)
        if X_val is not None:
            X_val.insert(len(X_val.columns), self._label_column_name, y_val)
        assert self.params['tune_kwargs']['num_trials'] == 1 \
               or self.params['tune_kwargs']['num_trials'] is None,\
            'Currently, you cannot nest the hyperparameter search in text neural network ' \
            'and the AutoGluon Tabular.'

        verbosity_text = max(0, verbosity - 1)
        root_logger = logging.getLogger()
        root_log_level = root_logger.level
        self.model = TextPredictor(label=self._label_column_name,
                                   problem_type=self.problem_type,
                                   path=self.path,
                                   eval_metric=self.eval_metric,
                                   verbosity=verbosity_text)
        self.model.fit(train_data=X_train,
                       tuning_data=X_val,
                       time_limit=time_limit,
                       num_gpus=num_gpus,
                       num_cpus=num_cpus,
                       hyperparameters=self.params,
                       seed=self.params.get('seed', 0))
        self.model.set_verbosity(verbosity)
        root_logger.setLevel(root_log_level)  # Reset log level

    def save(self, path: str = None, verbose=True) -> str:
        self._load_model = self.model is not None
        __model = self.model
        self.model = None
        # save this AbstractModel object without NN weights
        path = super().save(path=path, verbose=verbose)
        self.model = __model

        if self._load_model:
            text_nn_path = os.path.join(path, self.nn_model_name)
            self.model.save(text_nn_path)
            logger.log(
                15,
                f"\tSaved Text NN weights and model hyperparameters to '{text_nn_path}'."
            )
        self._load_model = None
        return path

    @classmethod
    def load(cls, path: str, reset_paths=True, verbose=True):
        model = super().load(path=path,
                             reset_paths=reset_paths,
                             verbose=verbose)
        if model._load_model:
            try_import_autogluon_text()
            from autogluon.text import TextPredictor
            model.model = TextPredictor.load(
                os.path.join(path, cls.nn_model_name))
        model._load_model = None
        return model

    def get_memory_size(self) -> int:
        """Return the memory size by calculating the total number of parameters.

        Returns
        -------
        memory_size
            The total memory size in bytes.
        """
        total_size = 0
        for k, v in self.model._model.net.collect_params().items():
            total_size += np.dtype(v.dtype).itemsize * np.prod(v.shape)
        return total_size

    def _get_default_resources(self):
        num_cpus = get_cpu_count()
        num_gpus = get_gpu_count()
        return num_cpus, num_gpus

    def _predict_proba(self, X, **kwargs):
        X = self.preprocess(X, **kwargs)

        if self.problem_type == REGRESSION:
            return self.model.predict(X, as_pandas=False)

        y_pred_proba = self.model.predict_proba(X, as_pandas=False)
        return self._convert_proba_to_unified_form(y_pred_proba)