def test_predictor_fit(key): train_data = load_pd.load(DATA_INFO[key]['train']) dev_data = load_pd.load(DATA_INFO[key]['dev']) label = DATA_INFO[key]['label'] eval_metric = DATA_INFO[key]['metric'] verify_proba = DATA_INFO[key]['verify_proba'] rng_state = np.random.RandomState(123) train_perm = rng_state.permutation(len(train_data)) valid_perm = rng_state.permutation(len(dev_data)) train_data = train_data.iloc[train_perm[:100]] dev_data = dev_data.iloc[valid_perm[:10]] predictor = TextPredictor(label=label, eval_metric=eval_metric) predictor.fit(train_data, hyperparameters=get_test_hyperparameters(), time_limit=30, seed=123) dev_score = predictor.evaluate(dev_data) verify_predictor_save_load(predictor, dev_data, verify_proba=verify_proba) # Test for continuous fit predictor.fit(train_data, hyperparameters=get_test_hyperparameters(), time_limit=30, seed=123) verify_predictor_save_load(predictor, dev_data, verify_proba=verify_proba) # Saving to folder, loading the saved model and call fit again (continuous fit) with tempfile.TemporaryDirectory() as root: predictor.save(root) predictor = TextPredictor.load(root) predictor.fit(train_data, hyperparameters=get_test_hyperparameters(), time_limit=30, seed=123)
def test_standalone_with_emoji(): import tempfile from unittest import mock requests_gag = mock.patch( 'requests.Session.request', mock.Mock(side_effect=RuntimeError( 'Please use the `responses` library to mock HTTP in your tests.' )) ) data = [] for i in range(50 * 3): data.append(('😁' * (i + 1), 'grin')) for i in range(30 * 3): data.append(('😃' * (i + 1), 'smile')) for i in range(20 * 3): data.append(('😉' * (i + 1), 'wink')) df = pd.DataFrame(data, columns=['data', 'label']) predictor = TextPredictor(label='label', verbosity=3) predictor.fit( df, hyperparameters=get_test_hyperparameters(), time_limit=5, seed=123, ) predictions1 = predictor.predict(df, as_pandas=False) with tempfile.TemporaryDirectory() as root: predictor.save(root, standalone=True) with requests_gag: # no internet connections offline_predictor = TextPredictor.load(root) predictions2 = offline_predictor.predict(df, as_pandas=False) npt.assert_equal(predictions1, predictions2)
class TextPredictorModel(AbstractModel): nn_model_name = 'text_nn' def __init__(self, **kwargs): """Wrapper of autogluon.text.TextPredictor. The features can be a mix of - text column - categorical column - numerical column The labels can be categorical or numerical. Parameters ---------- path The directory to store the modeling outputs. name Name of subdirectory inside path where model will be saved. problem_type Type of problem that this model will handle. Valid options: ['binary', 'multiclass', 'regression']. eval_metric The evaluation metric. num_classes The number of classes. stopping_metric The stopping metric. model The internal model object. hyperparameters The hyperparameters of the model features Names of the features. feature_metadata The feature metadata. """ super().__init__(**kwargs) self._label_column_name = None self._load_model = None # Whether to load inner model when loading. def _get_default_auxiliary_params(self) -> dict: default_auxiliary_params = super()._get_default_auxiliary_params() extra_auxiliary_params = dict(get_features_kwargs=dict( valid_raw_types=[R_INT, R_FLOAT, R_CATEGORY, R_OBJECT], invalid_special_types=[ S_TEXT_NGRAM, S_TEXT_AS_CATEGORY, S_TEXT_SPECIAL ], ), ) default_auxiliary_params.update(extra_auxiliary_params) return default_auxiliary_params @classmethod def _get_default_ag_args(cls) -> dict: default_ag_args = super()._get_default_ag_args() extra_ag_args = {'valid_stacker': False} default_ag_args.update(extra_ag_args) return default_ag_args def _set_default_params(self): super()._set_default_params() try_import_autogluon_text() from autogluon.text import ag_text_presets self.params = ag_text_presets.create('default') def _fit(self, X: pd.DataFrame, y: pd.Series, X_val: Optional[pd.DataFrame] = None, y_val: Optional[pd.Series] = None, time_limit: Optional[int] = None, sample_weight=None, **kwargs): """The internal fit function Parameters ---------- X Features of the training dataset y Labels of the training dataset X_val Features of the validation dataset y_val Labels of the validation dataset time_limit The time limits for the fit function kwargs Other keyword arguments """ try_import_mxnet() try_import_autogluon_text() from autogluon.text import TextPredictor # Decide name of the label column if 'label' in X.columns: label_col_id = 0 while True: self._label_column_name = 'label{}'.format(label_col_id) if self._label_column_name not in X.columns: break label_col_id += 1 else: self._label_column_name = 'label' X_train = self.preprocess(X, fit=True) if X_val is not None: X_val = self.preprocess(X_val) # Get arguments from kwargs verbosity = kwargs.get('verbosity', 2) num_cpus = kwargs.get('num_cpus', None) num_gpus = kwargs.get('num_gpus', None) if sample_weight is not None: # TODO: support logger.log( 15, "sample_weight not yet supported for TextPredictorModel, this model will ignore them in training." ) X_train.insert(len(X_train.columns), self._label_column_name, y) if X_val is not None: X_val.insert(len(X_val.columns), self._label_column_name, y_val) assert self.params['tune_kwargs']['num_trials'] == 1 \ or self.params['tune_kwargs']['num_trials'] is None,\ 'Currently, you cannot nest the hyperparameter search in text neural network ' \ 'and the AutoGluon Tabular.' verbosity_text = max(0, verbosity - 1) root_logger = logging.getLogger() root_log_level = root_logger.level self.model = TextPredictor(label=self._label_column_name, problem_type=self.problem_type, path=self.path, eval_metric=self.eval_metric, verbosity=verbosity_text) self.model.fit(train_data=X_train, tuning_data=X_val, time_limit=time_limit, num_gpus=num_gpus, num_cpus=num_cpus, hyperparameters=self.params, seed=self.params.get('seed', 0)) self.model.set_verbosity(verbosity) root_logger.setLevel(root_log_level) # Reset log level def save(self, path: str = None, verbose=True) -> str: self._load_model = self.model is not None __model = self.model self.model = None # save this AbstractModel object without NN weights path = super().save(path=path, verbose=verbose) self.model = __model if self._load_model: text_nn_path = os.path.join(path, self.nn_model_name) self.model.save(text_nn_path) logger.log( 15, f"\tSaved Text NN weights and model hyperparameters to '{text_nn_path}'." ) self._load_model = None return path @classmethod def load(cls, path: str, reset_paths=True, verbose=True): model = super().load(path=path, reset_paths=reset_paths, verbose=verbose) if model._load_model: try_import_autogluon_text() from autogluon.text import TextPredictor model.model = TextPredictor.load( os.path.join(path, cls.nn_model_name)) model._load_model = None return model def get_memory_size(self) -> int: """Return the memory size by calculating the total number of parameters. Returns ------- memory_size The total memory size in bytes. """ total_size = 0 for k, v in self.model._model.net.collect_params().items(): total_size += np.dtype(v.dtype).itemsize * np.prod(v.shape) return total_size def _get_default_resources(self): num_cpus = get_cpu_count() num_gpus = get_gpu_count() return num_cpus, num_gpus def _predict_proba(self, X, **kwargs): X = self.preprocess(X, **kwargs) if self.problem_type == REGRESSION: return self.model.predict(X, as_pandas=False) y_pred_proba = self.model.predict_proba(X, as_pandas=False) return self._convert_proba_to_unified_form(y_pred_proba)