Beispiel #1
0
def quantize(W, nb = 16, clip_through=False):
    non_sign_bits = nb-1
    m = pow(2,non_sign_bits)
    # W = tf.Print(W,[W, non_sign_bits],message = "---- W Quantize Before---- \n ",summarize=10, first_n = 5)
    if clip_through:
        Wq = clip_through(round_through(W*m),-m,m-1)/m
    else:
        Wq = K.clip(round_through(W*m),-m,m-1)/m
    # Wq = tf.Print(Wq,[Wq],message = "---- Wq Quantize After---- \n ",summarize=10, first_n = 5)
    #Wq = tf.Print(Wq,[Wq],summarize=20)
    return Wq
def quantize(W, nb=16, clip_through=False):
    '''The weights' binarization function, 
    # Reference:
    - [QuantizedNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, Courbariaux et al. 2016](http://arxiv.org/abs/1602.02830}
    '''

    non_sign_bits = nb - 1
    m = pow(2, non_sign_bits)
    # W = tf.Print(W,[W, non_sign_bits],message = "---- W Quantize Before---- \n ",summarize=10, first_n = 5)
    if clip_through:
        Wq = clip_through(round_through(W * m), -m, m - 1) / m
    else:
        Wq = K.clip(round_through(W * m), -m, m - 1) / m
    # Wq = tf.Print(Wq,[Wq],message = "---- Wq Quantize After---- \n ",summarize=10, first_n = 5)
    #Wq = tf.Print(Wq,[Wq],summarize=20)
    return Wq
Beispiel #3
0
def quantized_tanh(W, nb=16):
    non_sign_bits = nb-1
    m = pow(2,non_sign_bits)
    #W = tf.Print(W,[W],summarize=20)
    Wq = K.clip(round_through(W*m),-m,m-1)/m
    #Wq = tf.Print(Wq,[Wq],summarize=20)
    return Wq
def binary_sigmoid(x):
    '''Binary hard sigmoid for training binarized neural network.

    # Reference:
    - [BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, Courbariaux et al. 2016](http://arxiv.org/abs/1602.02830}

    '''
    return round_through(_hard_sigmoid(x))
def quantized_tanh(W, nb=16):
    '''The weights' binarization function,
    # Reference:
    - [QuantizedNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, Courbariaux et al. 2016](http://arxiv.org/abs/1602.02830}
    '''
    non_sign_bits = nb - 1
    m = pow(2, non_sign_bits)
    #W = tf.Print(W,[W],summarize=20)
    Wq = K.clip(round_through(W * m), -m, m - 1) / m
    #Wq = tf.Print(Wq,[Wq],summarize=20)
    return Wq
def binary_tanh(x):
    '''Binary hard sigmoid for training binarized neural network.
     The neurons' activations binarization function
     It behaves like the sign function during forward propagation
     And like:
        hard_tanh(x) = 2 * _hard_sigmoid(x) - 1 
        clear gradient when |x| > 1 during back propagation

    # Reference:
    - [BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, Courbariaux et al. 2016](http://arxiv.org/abs/1602.02830}

    '''
    return 2 * round_through(_hard_sigmoid(x)) - 1
def log_quantize(W, nb=16):
    '''The weights' binarization function, 
    # Reference:
    - [QuantizedNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, Courbariaux et al. 2016](http://arxiv.org/abs/1602.02830}
    '''

    non_sign_bits = nb
    W = tf.Print(W, [W, nb],
                 message="---- W Log Quantize normal---- \n ",
                 summarize=50,
                 first_n=5)

    W_where = tf.where(W > 0, W, tf.zeros_like(W) + 1e-15)
    W_where = tf.Print(W_where, [W_where, nb],
                       message="---- W Log Quantize after where---- \n ",
                       summarize=50,
                       first_n=5)

    W_log = log2_through(W_where)
    W_log = tf.Print(W_log, [W_log, nb],
                     message="---- W Log Quantize after log--- \n ",
                     summarize=50,
                     first_n=5)

    W_round = round_through(W_log)
    W_round = tf.Print(W_round, [W_round, nb],
                       message="---- W Log Quantize after round---- \n ",
                       summarize=50,
                       first_n=5)

    W_clip = clip_through(W_round, 0, nb - 1)
    W_clip = tf.Print(W_clip, [W_clip, nb],
                      message="---- W Log Quantize after clip---- \n ",
                      summarize=50,
                      first_n=5)
    W_pow = pow_through(W_clip, 2)
    W_pow = tf.Print(W_pow, [W_pow, nb],
                     message="---- W Log Quantize after pow---- \n ",
                     summarize=50,
                     first_n=5)

    W_fix = tf.where(W_round < 0, tf.zeros_like(W_pow), W_pow)
    W_fix = tf.Print(W_fix, [W_fix, nb],
                     message="---- W Log Quantize after fix---- \n ",
                     summarize=50,
                     first_n=5)

    return W_fix
Beispiel #8
0
def log_quantize(W, nb = 16):
    non_sign_bits = nb
    W = tf.Print(W,[W, nb],message = "---- W Log Quantize normal---- \n ",summarize=50, first_n = 5)
    W_where = tf.where(W > 0, W, tf.zeros_like(W) +1e-15)
    W_where = tf.Print(W_where,[W_where, nb],message = "---- W Log Quantize after where---- \n ",summarize=50, first_n = 5)
    W_log = log2_through(W_where)
    W_log = tf.Print(W_log,[W_log, nb],message = "---- W Log Quantize after log--- \n ",summarize=50, first_n = 5)
    W_round = round_through(W_log)
    W_round = tf.Print(W_round,[W_round, nb],message = "---- W Log Quantize after round---- \n ",summarize=50, first_n = 5)
    W_clip = clip_through(W_round,0, nb-1)
    W_clip = tf.Print(W_clip,[W_clip, nb],message = "---- W Log Quantize after clip---- \n ",summarize=50, first_n = 5)
    W_pow = pow_through(W_clip, 2) 
    W_pow = tf.Print(W_pow,[W_pow, nb],message = "---- W Log Quantize after pow---- \n ",summarize=50, first_n = 5)
    W_fix = tf.where(W_round<0, tf.zeros_like(W_pow), W_pow)
    W_fix = tf.Print(W_fix,[W_fix, nb],message = "---- W Log Quantize after fix---- \n ",summarize=50, first_n = 5)
    return W_fix
def quantized_relu(W, nb=16):
    '''The weights' binarization function, 
    # Reference:
    - [QuantizedNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, Courbariaux et al. 2016](http://arxiv.org/abs/1602.02830}
    '''
    #non_sign_bits = nb-1
    #m = pow(2,non_sign_bits)
    #Wq = K.clip(round_through(W*m),0,m-1)/m
    # W = tf.Print(W,[W, nb],message = "---- W Quantize Relu Before---- \n ",summarize=5, first_n = 5)

    nb_bits = nb
    Wq = K.clip(
        2. *
        (round_through(_hard_sigmoid(W) * pow(2, nb_bits)) / pow(2, nb_bits)) -
        1., 0, 1 - 1.0 / pow(2, nb_bits - 1))
    # Wq = tf.Print(Wq,[Wq],message = "---- W Quantize Relu After---- \n ",summarize=5, first_n = 5)

    return Wq
Beispiel #10
0
def binary_sigmoid(x):
    return round_through(_hard_sigmoid(x))
Beispiel #11
0
def binary_tanh(x):
    return 2 * round_through(_hard_sigmoid(x)) - 1
Beispiel #12
0
def quantized_relu(W, nb=16):
    nb_bits = nb
    Wq = K.clip(2. * (round_through(_hard_sigmoid(W) * pow(2, nb_bits)) / pow(2, nb_bits)) - 1., 0,
                1 - 1.0 / pow(2, nb_bits - 1))
    # Wq = tf.Print(Wq,[Wq],message = "---- W Quantize Relu After---- \n ",summarize=5, first_n = 5)
    return Wq