def __init__(self, nfft, win_step): def tfc(x): return np.array([spectrogram(x[ci, :], nfft, win_step) for ci in range(x.shape[0])]) BaseNode.__init__(self) self.nfft, self.win_step = nfft, win_step self.n = ApplyOverInstances(tfc)
def __init__(self, nodes, tr_splitter=copy_splitter, te_splitter=copy_splitter, combiner=average_combiner): BaseNode.__init__(self) assert isinstance(nodes, list) self.nodes = nodes self.tr_splitter = tr_splitter self.te_splitter = te_splitter self.combiner = combiner
def __init__(self, isi=10, reest=0.5): """ Define a SlowSphering node, with inter-stimulus interval isi in seconds which is reestimated every reest seconds. """ self.isi = isi self.reest = reest BaseNode.__init__(self)
def __init__(self, statistic, min_nfeatures=0, threshold=-np.inf): ''' Construct a feature filter that keeps min_nfeatures, or all featurs that score higher than treshold using the statistic function. ''' BaseNode.__init__(self) self.statf = statistic self.min_nfeatures = min_nfeatures self.threshold = threshold
def __init__(self, mdict, heog='hEOG', veog='vEOG', reog='rEOG', keep_eog=True, eeg=None): assert sorted(mdict.values()) == ['blink', 'down', 'left', 'right', 'up'] BaseNode.__init__(self) self.heog = heog self.veog = veog self.reog = reog self.mdict = mdict self.keep_eog = keep_eog self.eeg = eeg
def __init__(self, classes=(0,1), reg=0.2, peak_ch=None, time_range=None, spatial_only=False): BaseNode.__init__(self) assert type(classes) == int or len(classes) == 2 self.classes = classes self.reg = reg self.peak_ch=peak_ch assert time_range is None or len(time_range) == 2,\ 'Time range should be specified as (begin, end)' self.time_range = time_range self.spatial_only = spatial_only
def __init__(self, c=np.logspace(-3, 5, 10), kernel=None, **params): BaseNode.__init__(self) self.c = np.atleast_1d(c) self.c_star = np.nan self.kernel = kernel self.kernel_params = params self.nfolds = 5 if 'C' in params.keys(): warnings.warn( "The SVM's C-parameter has been replaced with a lowercase c.", DeprecationWarning) self.c = np.atleast_1d(params['C'])
def __init__(self, alpha=.0, beta=.3, cov_f=lw_cov): ''' Regularized Discriminant Analysis, Alpaydin, p.98, Eq. 5.29: S_i^{'} = \alpha \sigma^2I + \beta S + (1 - \alpha - \beta)S_i alpha = beta = 0 results in a quadratic classfier, alpha = 0, beta = 1 results in a linear classifier, alpha = 1, beta = 0 results in a nearest mean classifier. ''' BaseNode.__init__(self) self.alpha = float(alpha) self.beta = float(beta) self.cov_f = cov_f
def __init__(self, template, shrinkage='oas', center=True): BaseNode.__init__(self) self.template = template self.template = np.atleast_2d(template) self.center = center if center: self.template -= self.template.mean() if shrinkage == 'oas': self.cov = OAS elif shrinkage == 'lw': self.cov = LedoitWolf elif shrinkage == 'none': self.cov = EmpiricalCovariance elif type(shrinkage) == float or type(shrinkage) == int: self.cov = ShrunkCovariance(shrinkage=shrinkage)
def __init__( self, eeg=[], eog=None, bads=None, ref=[], bipolar=None, heog=None, veog=None, calc_reog=False, drop=None, drop_ref=False, ): BaseNode.__init__(self) assert eeg is None or hasattr(eeg, "__iter__"), "Parameter eeg should either be None or a list" assert eog is None or hasattr(eog, "__iter__"), "Parameter eog should either be None or a list" assert bads is None or hasattr(bads, "__iter__"), "Parameter bads should either be None or a list" assert ref is None or hasattr(ref, "__iter__"), "Parameter ref should either be None or a list" assert bipolar is None or type(bipolar) == dict, "Parameter bipolar should either be None or a dictionary" if bipolar is not None: for channels in bipolar.values(): assert len(channels) == 2, "Bipolar channels should be a " "dictionary containing tuples as " "values" assert heog is None or ( hasattr(heog, "__iter__") and len(heog) == 2 ), "Parameter heog should either be None or a tuple" assert veog is None or ( hasattr(veog, "__iter__") and len(veog) == 2 ), "Parameter veog should either be None or a tuple" self.eeg = eeg self.eog = None if eog == [] else eog self.bads = None if bads == [] else bads self.ref = ref self.bipolar = None if bipolar == {} else bipolar self.heog = heog self.veog = veog self.calc_reog = calc_reog self.drop = None if drop == [] else drop self.drop_ref = drop_ref
def __init__(self, class_i, node): BaseNode.__init__(self) self.class_i = class_i self.node = node
def __init__(self, nodes, critic): BaseNode.__init__(self) self.nodes = list(nodes) self.critic = critic
def __init__(self, W, ftype=None, preserve_feat_lab=False): BaseNode.__init__(self) self.W = W self.ftype = ftype self.preserve_feat_lab = preserve_feat_lab
def __init__(self, rt): BaseNode.__init__(self) self.rt = rt
def __init__(self, retain=.95, ndims=None, cov_f=lw_cov): BaseNode.__init__(self) self.retain = float(retain) self.ndims = ndims self.cov_f = cov_f
def __init__(self, nodes): BaseNode.__init__(self) self.nodes = list(nodes)
def __init__(self, binary_node): BaseNode.__init__(self) self.binary_node = binary_node
def __init__(self, cia, cib, node): BaseNode.__init__(self) self.cia = cia self.cib = cib self.node = node
def __init__(self, win_size, win_step, ref_point=.5): BaseNode.__init__(self) self.win_size = win_size self.win_step = win_step self.ref_frame = ref_point * self.win_size
def __init__(self, mapping): BaseNode.__init__(self) self.mapping = mapping