Beispiel #1
0
    for line in content_reader:
        for i in range(num_methods-1):
            for j in range(MAX_ROBOTS):
                samples[i][j].append(-float(line[i+num_methods*j]))

with open(sys.argv[2], 'rb') as csvfile:
    content_reader = csv.reader(csvfile, delimiter=',')
    for line in content_reader:
        samples[num_methods-1][0].append(-float(line[0]))

samples2 = samples[1:3] + samples[:1] + samples[4:] + samples[3:4]
yticklabels = [str(-x) for x in range(10)]
fig, ax, rects, means= \
        graph.draw_bar_chart(samples2, ["Heuristic", "HeuristicImproved", "SingleRobot", "UCT-NSM", "UCT"],
                             second_level_names=('',),
                             yticklabels=yticklabels,
                             xlabel='Different Approaches',
                       ylabel='Normalized Reward (negated)')

plt.axhline(y=0.0, xmin=0, xmax=2, linewidth=1, color="black") 
plt.axis([-rects[0][0].get_width(), (num_methods + 1)*rects[0][0].get_width(), 0, 9])

fig = plt.gcf()
fig.set_size_inches(5.5,5.5)#2.3,4)
plt.savefig('out.png',bbox_inches='tight',pad_inches=0.1,dpi=150)

plt.show()

# pylab.figure()
# for method in range(num_methods): 
#     pylab.hist(samples[method][4], [1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 20.0, 50.0, 100.0], histtype='step', label=method_names[method])
print 'Reading from: ' + sys.argv[1]
with open(sys.argv[1], 'rb') as csvfile:
    content_reader = csv.reader(csvfile, delimiter=',')
    for line in content_reader:
        if str(line[0]) == 'heuristic':
            for i in range(MAX_ROBOTS):
                print 2 + 2*i
                samples[0][i].append(float(line[2 + 2*i]) / shortest_distances[i])
        else:
            for i in range(MAX_ROBOTS):
                samples[1][i].append(float(line[2 + 2*i]) / shortest_distances[i])

fig, ax, rects, means= \
        graph.draw_bar_chart(samples, method_names, 
                       ('1 Robot', '2 Robots', '3 Robots', '4 Robots', 
                        '5 Robots'),
                       title='Average Normalized Distance',
                       ylabel='Normalized Distance')

sigs = None
if num_methods == 2:
    sigs = []
    for robots in range(MAX_ROBOTS):
        sig = graph.is_significant(samples[0][robots], samples[1][robots])
        if sig:
            print "For " + str(robots + 1) + " robots, diff is significant" 
        else:
            print "For " + str(robots + 1) + " robots, diff is not significant"
        sigs.append(sig)

#attach some text labels
    for j in range(MAX_ROBOTS):
        samples[i].append([])

first = True
print 'Reading from: ' + sys.argv[2]
with open(sys.argv[2], 'rb') as csvfile:
    content_reader = csv.reader(csvfile, delimiter=',')
    for line in content_reader:
        for i in range(num_methods):
            for j in range(MAX_ROBOTS):
                samples[i][j].append(float(line[i + num_methods*j]))

fig, ax, rects, means= \
        graph.draw_bar_chart(samples[:1] + samples[-1:] + samples[1:3], 
                             method_names[:1] + method_names[-1:] + method_names[1:3], 
                       ('1 Robot', '2 Robots', '3 Robots', '4 Robots', 
                        '5 Robots'),
                       ylabel='Normalized Time Taken',
                       xlabel='maxRobots')

sigs = []
for robots in range(MAX_ROBOTS):
    sig = graph.is_significant(samples[2][robots], samples[1][robots])
    if sig:
        print "For " + str(robots + 1) + " robots, diff is significant" 
    else:
        print "For " + str(robots + 1) + " robots, diff is not significant"
    sigs.append(sig)

print sigs
#attach some text labels
if sigs:
    for j in range(MAX_ROBOTS):
        samples[i].append([])

first = True
print "Reading from: " + sys.argv[2]
with open(sys.argv[2], "rb") as csvfile:
    content_reader = csv.reader(csvfile, delimiter=",")
    for line in content_reader:
        for i in range(num_methods):
            for j in range(MAX_ROBOTS):
                samples[i][j].append(float(line[i + num_methods * j]))

fig, ax, rects, means = graph.draw_bar_chart(
    samples,
    method_names,
    ("1 Robot", "2 Robots", "3 Robots", "4 Robots", "5 Robots"),
    title="Average Normalized Distance",
    ylabel="Normalized Distance",
)

sigs = None
if num_methods == 2:
    sigs = []
    for robots in range(MAX_ROBOTS):
        sig = graph.is_significant(samples[0][robots], samples[1][robots])
        if sig:
            print "For " + str(robots + 1) + " robots, diff is significant"
        else:
            print "For " + str(robots + 1) + " robots, diff is not significant"
        sigs.append(sig)