def single_sino(sino: np.ndarray,
                    cor: ScalarCoR,
                    proj_angles: ProjectionAngles,
                    recon_params: ReconstructionParameters,
                    progress: Optional[Progress] = None):
        """
        Reconstruct a single slice from a single sinogram. Used for the preview and the single slice button.
        Should return a numpy array,
        """

        if progress:
            progress.add_estimated_steps(recon_params.num_iter + 1)
            progress.update(steps=1,
                            msg='CIL: Setting up reconstruction',
                            force_continue=False)

        if cil_mutex.locked():
            LOG.warning("CIL recon already in progress")

        with cil_mutex:
            sino = BaseRecon.prepare_sinogram(sino, recon_params)
            pixel_num_h = sino.shape[1]
            pixel_size = 1.
            rot_pos_x = (cor.value - pixel_num_h / 2) * pixel_size
            ag = AcquisitionGeometry.create_Parallel2D(
                rotation_axis_position=[rot_pos_x, 0])

            ag.set_panel(pixel_num_h, pixel_size=pixel_size)
            ag.set_labels(DataOrder.ASTRA_AG_LABELS)
            ag.set_angles(angles=proj_angles.value, angle_unit='radian')

            # stick it into an AcquisitionData
            data = ag.allocate(None)
            data.fill(sino)

            alpha = recon_params.alpha

            ig = ag.get_ImageGeometry()
            # set up TV regularisation
            K, f1, f2, G = CILRecon.set_up_TV_regularisation(ig, data, alpha)

            # alpha = 1.0
            # f1 =  alpha * MixedL21Norm()
            # f2 = 0.5 * L2NormSquared(b=ad2d)

            F = BlockFunction(f1, f2)
            normK = K.norm()
            sigma = 1
            tau = 1 / (sigma * normK**2)

            pdhg = PDHG(f=F,
                        g=G,
                        operator=K,
                        tau=tau,
                        sigma=sigma,
                        max_iteration=100000,
                        update_objective_interval=10)

            try:
                for iter in range(recon_params.num_iter):
                    if progress:
                        progress.update(
                            steps=1,
                            msg=
                            f'CIL: Iteration {iter + 1} of {recon_params.num_iter}'
                            f': Objective {pdhg.get_last_objective():.2f}',
                            force_continue=False)
                    pdhg.next()
            finally:
                if progress:
                    progress.mark_complete()
            return pdhg.solution.as_array()
    def full(images: Images,
             cors: List[ScalarCoR],
             recon_params: ReconstructionParameters,
             progress: Optional[Progress] = None):
        """
        Performs a volume reconstruction using sample data provided as sinograms.

        :param images: Array of sinogram images
        :param cors: Array of centre of rotation values
        :param proj_angles: Array of projection angles in radians
        :param recon_params: Reconstruction Parameters
        :param progress: Optional progress reporter
        :return: 3D image data for reconstructed volume
        """

        progress = Progress.ensure_instance(progress,
                                            task_name='CIL reconstruction',
                                            num_steps=recon_params.num_iter +
                                            1)

        projection_size = full_size_KB(images.data.shape, images.dtype)
        recon_volume_shape = images.data.shape[2], images.data.shape[
            2], images.data.shape[1]
        recon_volume_size = full_size_KB(recon_volume_shape, images.dtype)
        estimated_mem_required = 5 * projection_size + 13 * recon_volume_size
        free_mem = system_free_memory().kb()

        if (estimated_mem_required > free_mem):
            estimate_gb = estimated_mem_required / 1024 / 1024
            raise RuntimeError(
                "The machine does not have enough physical memory available to allocate space for this data."
                f" Estimated RAM needed is {estimate_gb:.2f} GB")

        if cil_mutex.locked():
            LOG.warning("CIL recon already in progress")

        with cil_mutex:
            progress.update(steps=1,
                            msg='CIL: Setting up reconstruction',
                            force_continue=False)
            angles = images.projection_angles(
                recon_params.max_projection_angle).value
            shape = images.data.shape
            pixel_num_h, pixel_num_v = shape[2], shape[1]
            pixel_size = 1.
            if recon_params.tilt is None:
                raise ValueError("recon_params.tilt is not set")
            rot_pos = [
                (cors[pixel_num_v // 2].value - pixel_num_h / 2) * pixel_size,
                0, 0
            ]
            slope = -np.tan(np.deg2rad(recon_params.tilt.value))
            rot_angle = [slope, 0, 1]

            ag = AcquisitionGeometry.create_Parallel3D(
                rotation_axis_position=rot_pos,
                rotation_axis_direction=rot_angle)
            ag.set_panel([pixel_num_h, pixel_num_v],
                         pixel_size=(pixel_size, pixel_size))
            ag.set_angles(angles=angles, angle_unit='radian')
            ag.set_labels(DataOrder.TIGRE_AG_LABELS)

            # stick it into an AcquisitionData
            data = ag.allocate(None)
            data.fill(BaseRecon.prepare_sinogram(images.data, recon_params))
            data.reorder('astra')

            alpha = recon_params.alpha

            ig = ag.get_ImageGeometry()
            # set up TV regularisation
            K, f1, f2, G = CILRecon.set_up_TV_regularisation(ig, data, alpha)

            # alpha = 1.0
            # f1 =  alpha * MixedL21Norm()
            # f2 = 0.5 * L2NormSquared(b=ad2d)
            F = BlockFunction(f1, f2)
            normK = K.norm()
            sigma = 1
            tau = 1 / (sigma * normK**2)

            pdhg = PDHG(f=F,
                        g=G,
                        operator=K,
                        tau=tau,
                        sigma=sigma,
                        max_iteration=100000,
                        update_objective_interval=10)

            with progress:
                for iter in range(recon_params.num_iter):
                    progress.update(
                        steps=1,
                        msg=
                        f'CIL: Iteration {iter+1} of {recon_params.num_iter}:'
                        f'Objective {pdhg.get_last_objective():.2f}',
                        force_continue=False)
                    pdhg.next()
                volume = pdhg.solution.as_array()
                LOG.info('Reconstructed 3D volume with shape: {0}'.format(
                    volume.shape))
            return Images(volume)