def single_sino(sino: np.ndarray, cor: ScalarCoR, proj_angles: ProjectionAngles, recon_params: ReconstructionParameters, progress: Optional[Progress] = None): """ Reconstruct a single slice from a single sinogram. Used for the preview and the single slice button. Should return a numpy array, """ if progress: progress.add_estimated_steps(recon_params.num_iter + 1) progress.update(steps=1, msg='CIL: Setting up reconstruction', force_continue=False) if cil_mutex.locked(): LOG.warning("CIL recon already in progress") with cil_mutex: sino = BaseRecon.prepare_sinogram(sino, recon_params) pixel_num_h = sino.shape[1] pixel_size = 1. rot_pos_x = (cor.value - pixel_num_h / 2) * pixel_size ag = AcquisitionGeometry.create_Parallel2D( rotation_axis_position=[rot_pos_x, 0]) ag.set_panel(pixel_num_h, pixel_size=pixel_size) ag.set_labels(DataOrder.ASTRA_AG_LABELS) ag.set_angles(angles=proj_angles.value, angle_unit='radian') # stick it into an AcquisitionData data = ag.allocate(None) data.fill(sino) alpha = recon_params.alpha ig = ag.get_ImageGeometry() # set up TV regularisation K, f1, f2, G = CILRecon.set_up_TV_regularisation(ig, data, alpha) # alpha = 1.0 # f1 = alpha * MixedL21Norm() # f2 = 0.5 * L2NormSquared(b=ad2d) F = BlockFunction(f1, f2) normK = K.norm() sigma = 1 tau = 1 / (sigma * normK**2) pdhg = PDHG(f=F, g=G, operator=K, tau=tau, sigma=sigma, max_iteration=100000, update_objective_interval=10) try: for iter in range(recon_params.num_iter): if progress: progress.update( steps=1, msg= f'CIL: Iteration {iter + 1} of {recon_params.num_iter}' f': Objective {pdhg.get_last_objective():.2f}', force_continue=False) pdhg.next() finally: if progress: progress.mark_complete() return pdhg.solution.as_array()
def full(images: Images, cors: List[ScalarCoR], recon_params: ReconstructionParameters, progress: Optional[Progress] = None): """ Performs a volume reconstruction using sample data provided as sinograms. :param images: Array of sinogram images :param cors: Array of centre of rotation values :param proj_angles: Array of projection angles in radians :param recon_params: Reconstruction Parameters :param progress: Optional progress reporter :return: 3D image data for reconstructed volume """ progress = Progress.ensure_instance(progress, task_name='CIL reconstruction', num_steps=recon_params.num_iter + 1) projection_size = full_size_KB(images.data.shape, images.dtype) recon_volume_shape = images.data.shape[2], images.data.shape[ 2], images.data.shape[1] recon_volume_size = full_size_KB(recon_volume_shape, images.dtype) estimated_mem_required = 5 * projection_size + 13 * recon_volume_size free_mem = system_free_memory().kb() if (estimated_mem_required > free_mem): estimate_gb = estimated_mem_required / 1024 / 1024 raise RuntimeError( "The machine does not have enough physical memory available to allocate space for this data." f" Estimated RAM needed is {estimate_gb:.2f} GB") if cil_mutex.locked(): LOG.warning("CIL recon already in progress") with cil_mutex: progress.update(steps=1, msg='CIL: Setting up reconstruction', force_continue=False) angles = images.projection_angles( recon_params.max_projection_angle).value shape = images.data.shape pixel_num_h, pixel_num_v = shape[2], shape[1] pixel_size = 1. if recon_params.tilt is None: raise ValueError("recon_params.tilt is not set") rot_pos = [ (cors[pixel_num_v // 2].value - pixel_num_h / 2) * pixel_size, 0, 0 ] slope = -np.tan(np.deg2rad(recon_params.tilt.value)) rot_angle = [slope, 0, 1] ag = AcquisitionGeometry.create_Parallel3D( rotation_axis_position=rot_pos, rotation_axis_direction=rot_angle) ag.set_panel([pixel_num_h, pixel_num_v], pixel_size=(pixel_size, pixel_size)) ag.set_angles(angles=angles, angle_unit='radian') ag.set_labels(DataOrder.TIGRE_AG_LABELS) # stick it into an AcquisitionData data = ag.allocate(None) data.fill(BaseRecon.prepare_sinogram(images.data, recon_params)) data.reorder('astra') alpha = recon_params.alpha ig = ag.get_ImageGeometry() # set up TV regularisation K, f1, f2, G = CILRecon.set_up_TV_regularisation(ig, data, alpha) # alpha = 1.0 # f1 = alpha * MixedL21Norm() # f2 = 0.5 * L2NormSquared(b=ad2d) F = BlockFunction(f1, f2) normK = K.norm() sigma = 1 tau = 1 / (sigma * normK**2) pdhg = PDHG(f=F, g=G, operator=K, tau=tau, sigma=sigma, max_iteration=100000, update_objective_interval=10) with progress: for iter in range(recon_params.num_iter): progress.update( steps=1, msg= f'CIL: Iteration {iter+1} of {recon_params.num_iter}:' f'Objective {pdhg.get_last_objective():.2f}', force_continue=False) pdhg.next() volume = pdhg.solution.as_array() LOG.info('Reconstructed 3D volume with shape: {0}'.format( volume.shape)) return Images(volume)