Beispiel #1
0
    def split_dataset(self, dataset, args):
        # process each graph and add it into Data() as attribute tx
        for i, data in enumerate(dataset):
            new_feature = get_single_feature(dataset[i], args.num_features,
                                             args.num_classes, args.sample,
                                             args.neighbor, args.stride)
            dataset[i].tx = torch.from_numpy(new_feature)

        return split_dataset_general(dataset, args)
Beispiel #2
0
 def split_dataset(cls, dataset, args):
     return split_dataset_general(dataset, args)