def split_dataset(self, dataset, args): # process each graph and add it into Data() as attribute tx for i, data in enumerate(dataset): new_feature = get_single_feature(dataset[i], args.num_features, args.num_classes, args.sample, args.neighbor, args.stride) dataset[i].tx = torch.from_numpy(new_feature) return split_dataset_general(dataset, args)
def split_dataset(cls, dataset, args): return split_dataset_general(dataset, args)