Beispiel #1
0
    def test_elementPow_valid(self):
        """ elementPow correctly scales all elements and updates self.Power"""
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=list(n.keys()),ColOrder=list(n.keys()),\
                    Pad=False)
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2)
            self.assertEqual(dm['A']['A'], m['A']['A']**2)
            self.assertEqual(dm['B']['A'], m['B']['A']**2)
            self.assertEqual(dm['B']['C'], m['B']['C']**2)

            # Test cube square root of all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=list(n.keys()),ColOrder=list(n.keys()),\
                    Pad=False)
            dm.elementPow(3)
            dm.elementPow(1. / 2.)
            self.assertEqual(dm.Power, 3. / 2.)
            self.assertEqual(dm['A']['A'], m['A']['A']**(3. / 2.))
            self.assertEqual(dm['B']['A'], m['B']['A']**(3. / 2.))
            self.assertEqual(dm['B']['C'], m['B']['C']**(3. / 2.))
Beispiel #2
0
    def test_attribute_init(self):
        """ Proper initialization of all attributes """

        # proper setting to defaults
        d = DistanceMatrix(data={'a': {'a': 1}})
        self.assertEqual(d.RowOrder, self.default_keys)
        self.assertEqual(d.ColOrder, self.default_keys)
        self.assertEqual(d.Pad, True)
        self.assertEqual(d.Default, None)
        self.assertEqual(d.RowConstructor, dict)

        # differ from defaults
        d = DistanceMatrix(data={'a':{'b':1}},RowOrder=['a'],\
                ColOrder=['b'],Pad=False,Default=42,RowConstructor=Freqs)
        self.assertEqual(d.RowOrder, ['a'])
        self.assertEqual(d.ColOrder, ['b'])
        self.assertEqual(d.Pad, False)
        self.assertEqual(d.Default, 42)
        self.assertEqual(d.RowConstructor, Freqs)

        # differ from defaults and no data
        d = DistanceMatrix(RowOrder=['a'],\
                ColOrder=['b'],Pad=False,Default=42,RowConstructor=Freqs)
        self.assertEqual(d.RowOrder, ['a'])
        self.assertEqual(d.ColOrder, ['b'])
        self.assertEqual(d.Pad, False)
        self.assertEqual(d.Default, 42)
        self.assertEqual(d.RowConstructor, Freqs)
Beispiel #3
0
 def test_colKeys(self):
     """ colKeys functions properly """
     dm = DistanceMatrix(data={'a':{'b':1}})
     goal = self.default_keys + ['b']
     goal.sort()
     actual = dm.colKeys()
     actual.sort()
     self.assertEqual(actual,goal)
Beispiel #4
0
 def test_colKeys(self):
     """ colKeys functions properly """
     dm = DistanceMatrix(data={'a': {'b': 1}})
     goal = self.default_keys + ['b']
     goal.sort()
     actual = dm.colKeys()
     actual.sort()
     self.assertEqual(actual, goal)
Beispiel #5
0
    def test_scale(self):
        """ Scale correctly applies function to all elements """
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
            dm.scale(lambda x: x**2)
            self.assertEqual(dm['A']['A'],m['A']['A']**2)
            self.assertEqual(dm['B']['A'],m['B']['A']**2)
            self.assertEqual(dm['B']['C'],m['B']['C']**2)

            # Test cube all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
            dm.scale(lambda x: x**3)
            self.assertEqual(dm['A']['A'],m['A']['A']**3)
            self.assertEqual(dm['B']['A'],m['B']['A']**3)
            self.assertEqual(dm['B']['C'],m['B']['C']**3)

            # Test linearize all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
            dm.scale(lambda x: 10**-(x/10.0))
            self.assertFloatEqual(dm['A']['A'],10**-(m['A']['A']/10.))
            self.assertFloatEqual(dm['B']['A'],10**-(m['B']['A']/10.))
            self.assertFloatEqual(dm['B']['C'],10**-(m['B']['C']/10.))
Beispiel #6
0
    def test_attribute_forwarder_integrity_after_copy(self):
        """ Integrity of attribute forwarding following a copy()"""
        dm = DistanceMatrix(data=self.m2, RowOrder=self.m2.keys(), info=self.aar)
        c = dm.copy()
       
        # dm.ID == '5'
        self.assertEqual(c.ID, dm.ID)
        self.assertEqual(c.Correlating, dm.Correlating)
        self.assertEqual(c.Data['R'], dm.Data['R'])

        c.ID = '0'
        self.assertNotEqual(c.ID,dm.ID)
Beispiel #7
0
 def test_transpose(self):
     """ transpose functions as expected """
     for m in self.matrices:
         d = DistanceMatrix(data=m)
         t = d.copy()
         t.transpose()
         # Note, this line will fail on a matrix where transpose = original
         self.assertNotEqual(t,d)
         for r in t:
             for c in t[r]:
                 self.assertEqual(t[r][c],d[c][r])
         t.transpose()
         self.assertEqual(t,d)
Beispiel #8
0
 def test_transpose(self):
     """ transpose functions as expected """
     for m in self.matrices:
         d = DistanceMatrix(data=m)
         t = d.copy()
         t.transpose()
         # Note, this line will fail on a matrix where transpose = original
         self.assertNotEqual(t, d)
         for r in t:
             for c in t[r]:
                 self.assertEqual(t[r][c], d[c][r])
         t.transpose()
         self.assertEqual(t, d)
Beispiel #9
0
    def test_copy(self):
        """ Copy functions as expected"""
        dm = DistanceMatrix(data=self.m2, RowOrder=self.m2.keys(), info=self.aar)
        c = dm.copy()
        self.assertEqual(c['A']['A'],dm['A']['A'])
        self.assertEqual(c.RowOrder,dm.RowOrder)
        self.assertEqual(c.ColOrder,dm.ColOrder)
        self.assertEqual(c.Pad,dm.Pad)
        self.assertEqual(c.Power,dm.Power)

        # Make sure it's a separate object
        c['A']['A'] = 999
        self.assertNotEqual(c['A']['A'],dm['A']['A'])
Beispiel #10
0
    def test_elementPow_valid(self):
        """ elementPow correctly scales all elements and updates self.Power"""
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2)
            self.assertEqual(dm['A']['A'],m['A']['A']**2)
            self.assertEqual(dm['B']['A'],m['B']['A']**2)
            self.assertEqual(dm['B']['C'],m['B']['C']**2)

            # Test cube square root of all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm.elementPow(3)
            dm.elementPow(1./2.)
            self.assertEqual(dm.Power, 3./2.)
            self.assertEqual(dm['A']['A'],m['A']['A']**(3./2.))
            self.assertEqual(dm['B']['A'],m['B']['A']**(3./2.))
            self.assertEqual(dm['B']['C'],m['B']['C']**(3./2.))
Beispiel #11
0
 def test_reflect(self):
     """ reflect functions as expected """
     for m in self.matrices:
         d = DistanceMatrix(data=m)
         n = d.copy()
         # Only testing one method, all other are tested in superclass, so
         # redundant testing is probably not necessary
         n.reflect(method=largest)
         for r in d.RowOrder:
             for c in d.ColOrder:
                 if d[r][c] > d[c][r]:
                     goal = d[r][c]
                 else:
                     goal = d[c][r]
                 self.assertEqual(n[r][c],goal)
                 self.assertEqual(n[c][r],goal)
Beispiel #12
0
 def test_default_padding(self):
     """ Default padding functions as expected """
     for m in self.matrices:
         dm = DistanceMatrix(data=m)
         for r in self.default_keys:
             for c in self.default_keys:
                 dm[r][c]
Beispiel #13
0
 def test_reflect(self):
     """ reflect functions as expected """
     for m in self.matrices:
         d = DistanceMatrix(data=m)
         n = d.copy()
         # Only testing one method, all other are tested in superclass, so
         # redundant testing is probably not necessary
         n.reflect(method=largest)
         for r in d.RowOrder:
             for c in d.ColOrder:
                 if d[r][c] > d[c][r]:
                     goal = d[r][c]
                 else:
                     goal = d[c][r]
                 self.assertEqual(n[r][c], goal)
                 self.assertEqual(n[c][r], goal)
Beispiel #14
0
 def test_Order_parameters(self):
     """ RowOrder and ColOrder are set to paramters as expected """
     row_order = ['a']
     col_order = ['b']
     for m in self.matrices:
         dm = DistanceMatrix(data=m, RowOrder=row_order, ColOrder=col_order)
         self.assertEqual(dm.RowOrder, row_order)
         self.assertEqual(dm.ColOrder, col_order)
Beispiel #15
0
    def test_elementPow_invalid_pow(self):
        """ elementPow correctly raises error on invalid power """
        for m in self.matrices:

            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            self.assertRaises(TypeError,dm.elementPow,None,ignore_invalid=False)
            self.assertRaises(TypeError,dm.elementPow,'a',ignore_invalid=False)
Beispiel #16
0
    def test_setDiag(self):
        """ setDiag works as expected """
        for m in self.matrices:
            # create a deep copy so we can test against original
            # matrix without it being effected by altering the object
            # based on it
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=list(m.keys()))

            # set diag to 42
            dm.setDiag(42)
            # test that diag is 42
            for k in dm:
                self.assertEqual(dm[k][k], 42)

            # test that no diag is unchanged
            self.assertEqual(dm['B']['A'], m['B']['A'])
            self.assertEqual(dm['B']['C'], m['B']['C'])
Beispiel #17
0
 def test_toDelimited(self):
     """DistanceMatrix toDelimited functions as expected"""
     d = DistanceMatrix(self.square,Pad=False)
     d.RowOrder = d.ColOrder = 'abc'
     self.assertEqual(d.toDelimited(), \
     '-\ta\tb\tc\na\t1\t2\t3\nb\t2\t4\t6\nc\t3\t6\t9')
     self.assertEqual(d.toDelimited(headers=False), \
         '1\t2\t3\n2\t4\t6\n3\t6\t9')
     #set up a custom formatter...
     def my_formatter(x):
         try:
             return '%1.1f' % x
         except:
             return str(x)
     #...and use it
     self.assertEqual(d.toDelimited(headers=True, item_delimiter='x', \
         row_delimiter='y', formatter=my_formatter), \
         '-xaxbxcyax1.0x2.0x3.0ybx2.0x4.0x6.0ycx3.0x6.0x9.0')
Beispiel #18
0
    def test_setDiag(self):
        """ setDiag works as expected """
        for m in self.matrices:
            # create a deep copy so we can test against original
            # matrix without it being effected by altering the object 
            # based on it
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=m.keys())
            
            # set diag to 42
            dm.setDiag(42)
            # test that diag is 42
            for k in dm:
                self.assertEqual(dm[k][k],42)

            # test that no diag is unchanged
            self.assertEqual(dm['B']['A'], m['B']['A'])
            self.assertEqual(dm['B']['C'], m['B']['C'])
Beispiel #19
0
 def test_sparse_init(self):
     """ Init correctly from a sparse dict """
     d = DistanceMatrix(data={'A': {'C': 0.}})
     for r in self.default_keys:
         for c in self.default_keys:
             if (r == 'A') and (c == 'C'):
                 self.assertEqual(d[r][c], 0.)
             else:
                 self.assertEqual(d[r][c], None)
Beispiel #20
0
    def test_init_data_types(self):
        """ Correct init from varying data types  """
        # No data
        goal = {}.fromkeys(self.default_keys)
        for r in goal:
            goal[r] = {}.fromkeys(self.default_keys)
        dm = DistanceMatrix()
        self.assertEqual(dm,goal)

        # data is dict of dicts
        dm = DistanceMatrix(data={'a':{'b':1}}, Pad=False)
        self.assertEqual(dm,{'a':{'b':1}})

        # data is list of lists
        dm = DistanceMatrix(data=[[1]],RowOrder=['a'],ColOrder=['b'], Pad=False)
        self.assertEqual(dm,{'a':{'b':1}})
        
        # data is in Indices form
        dm = DistanceMatrix(data=[('a','b',1)], Pad=False)
        self.assertEqual(dm,{'a':{'b':1}})
Beispiel #21
0
    def toDistanceMatrix(self, include_stops=False):
        """ Builds a DistanceMatrix object based on self """
        data = self._toSquareDistanceMatrix(include_stops=include_stops)

        # If there is missing or invalid data, data will be None
        # if that's the case return None for easy detection, otherwise
        # return a new DistanceMatrix object
        if data:
            return DistanceMatrix(data=data, info=self)

        return None
Beispiel #22
0
 def test_all_init_parameters(self):
     """ All parameters to init are handled correctly """
     # will fail if any paramters are not recognized
     d = DistanceMatrix()
     d = DistanceMatrix(data={})
     d = DistanceMatrix(RowOrder=[])
     d = DistanceMatrix(ColOrder=[])
     d = DistanceMatrix(Pad=True)
     d = DistanceMatrix(Default=42)
     d = DistanceMatrix(data={},RowOrder=[],ColOrder=[],Pad=True,Default=42)
Beispiel #23
0
    def test_elementPow_error_on_invalid(self):
        """ elementPow correctly raises error on invalid data"""
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm['A']['A'] = 'p'
            self.assertRaises(TypeError,dm.elementPow,2,ignore_invalid=False)
            
            dm['A']['A'] = None
            self.assertRaises(TypeError,dm.elementPow,2,ignore_invalid=False)
Beispiel #24
0
    def test_sharedColKeys(self):
        """ sharedColKeys functions properly """
        # no shared keys b/c a is not in RowOrder and therefore not padded
        dm = DistanceMatrix(data={'a': {'b': 1}})
        self.assertEqual(dm.sharedColKeys(), [])

        # shared should be only self.default_keys b/c 'b' not in ColOrder
        dm = DistanceMatrix(data={'a':{'b':1}},\
                RowOrder=self.default_keys + ['a'])
        actual = dm.sharedColKeys()
        actual.sort()
        self.assertEqual(actual, self.default_keys)

        # shared should be self.default_keys + 'b'
        dm = DistanceMatrix(data={'a':{'b':1}},\
                RowOrder=self.default_keys + ['a'],\
                ColOrder=self.default_keys + ['b'])
        actual = dm.sharedColKeys()
        actual.sort()
        self.assertEqual(actual, self.default_keys + ['b'])
Beispiel #25
0
    def test_elementPow_ignore_invalid(self):
        """ elementPow correctly detects and ignores invalid data"""
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=list(n.keys()),ColOrder=list(n.keys()),\
                    Pad=False)
            dm['A']['A'] = 'p'
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2.)
            self.assertEqual(dm['A']['A'], 'p')

            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=list(n.keys()),ColOrder=list(n.keys()),\
                    Pad=False)
            dm['A']['A'] = None
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2.)
            self.assertEqual(dm['A']['A'], None)
Beispiel #26
0
    def test_sharedColKeys(self):
        """ sharedColKeys functions properly """
        # no shared keys b/c a is not in RowOrder and therefore not padded
        dm = DistanceMatrix(data={'a':{'b':1}})
        self.assertEqual(dm.sharedColKeys(),[])

        # shared should be only self.default_keys b/c 'b' not in ColOrder
        dm = DistanceMatrix(data={'a':{'b':1}},\
                RowOrder=self.default_keys + ['a'])
        actual = dm.sharedColKeys()
        actual.sort()
        self.assertEqual(actual, self.default_keys)

        # shared should be self.default_keys + 'b'
        dm = DistanceMatrix(data={'a':{'b':1}},\
                RowOrder=self.default_keys + ['a'],\
                ColOrder=self.default_keys + ['b'])
        actual = dm.sharedColKeys()
        actual.sort()
        self.assertEqual(actual, self.default_keys + ['b'])
Beispiel #27
0
    def test_elementPow_ignore_invalid(self):
        """ elementPow correctly detects and ignores invalid data"""
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm['A']['A'] = 'p'
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2.)
            self.assertEqual(dm['A']['A'],'p')

            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm['A']['A'] = None
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2.)
            self.assertEqual(dm['A']['A'],None)
Beispiel #28
0
 def test_dict_integrity(self):
     """ Integrity of key -> value pairs """
     for m in self.matrices:
         dm = DistanceMatrix(data=m)
         self.assertEqual(dm['A']['A'], m['A']['A'])
         self.assertEqual(dm['B']['C'], m['B']['C'])
Beispiel #29
0
 def test_Order_defaults(self):
     """ RowOrder and ColOrder are set to default as expected """
     for m in self.matrices:
         dm = DistanceMatrix(data=m)
         self.assertEqual(dm.RowOrder, self.default_keys)
         self.assertEqual(dm.ColOrder, self.default_keys)
Beispiel #30
0
    def test_scale(self):
        """ Scale correctly applies function to all elements """
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=list(m.keys()), Pad=False)
            dm.scale(lambda x: x**2)
            self.assertEqual(dm['A']['A'], m['A']['A']**2)
            self.assertEqual(dm['B']['A'], m['B']['A']**2)
            self.assertEqual(dm['B']['C'], m['B']['C']**2)

            # Test cube all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=list(m.keys()), Pad=False)
            dm.scale(lambda x: x**3)
            self.assertEqual(dm['A']['A'], m['A']['A']**3)
            self.assertEqual(dm['B']['A'], m['B']['A']**3)
            self.assertEqual(dm['B']['C'], m['B']['C']**3)

            # Test linearize all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=list(m.keys()), Pad=False)
            dm.scale(lambda x: 10**-(x / 10.0))
            self.assertFloatEqual(dm['A']['A'], 10**-(m['A']['A'] / 10.))
            self.assertFloatEqual(dm['B']['A'], 10**-(m['B']['A'] / 10.))
            self.assertFloatEqual(dm['B']['C'], 10**-(m['B']['C'] / 10.))
Beispiel #31
0
 def test_attribute_forwarder_integrity(self):
     """ Integrity of attribute forwarding """
     dm = DistanceMatrix(data=self.m2, info=self.aar)
     self.assertEqual(dm.ID, '5')
     self.assertEqual(dm.Correlating, [0.987, 0.783, 1., 0])
     self.assertEqual(dm.Data['C'], 0.15)