Beispiel #1
0
                              session_init=get_model_loader(args.load),
                              input_names=['image'],
                              output_names=get_model_output_names()))
            # autotune is too slow for inference
            os.environ['TF_CUDNN_USE_AUTOTUNE'] = '0'
            assert args.load
            offline_pred([pred], args.evaluate)

    else:
        logger.set_logger_dir(args.logdir)
        factor = get_batch_factor()
        stepnum = config.STEP_PER_EPOCH

        cfg = TrainConfig(
            model=get_model(),
            data=QueueInput(get_train_dataflow()),
            callbacks=[
                PeriodicCallback(ModelSaver(max_to_keep=10,
                                            keep_checkpoint_every_n_hours=1),
                                 every_k_epochs=20),
                ScheduledHyperParamSetter('learning_rate',
                                          [(40, config.BASE_LR * 0.1),
                                           (60, config.BASE_LR * 0.01)]),
                #EvalCallback(),
                GPUUtilizationTracker(),
                PeakMemoryTracker(),
                EstimatedTimeLeft(),
            ],
            steps_per_epoch=stepnum,
            max_epoch=80,
            session_init=get_model_loader(args.load) if args.load else None,
Beispiel #2
0
                              session_init=get_model_loader(args.load),
                              input_names=['image'],
                              output_names=get_model_output_names()))
            # autotune is too slow for inference
            os.environ['TF_CUDNN_USE_AUTOTUNE'] = '0'
            assert args.load
            offline_pred([pred], args.evaluate)

    else:
        logger.set_logger_dir(args.logdir)
        factor = get_batch_factor()
        stepnum = config.STEP_PER_EPOCH

        cfg = TrainConfig(
            model=get_model(),
            data=QueueInput(get_train_dataflow()),  #FeedInput QueueInput
            callbacks=[
                PeriodicCallback(ModelSaver(max_to_keep=10,
                                            keep_checkpoint_every_n_hours=0.5),
                                 every_k_epochs=1),
                ScheduledHyperParamSetter(
                    'learning_rate',
                    [
                        (30, config.BASE_LR * 0.1),  #
                        (60, config.BASE_LR * 0.01)
                    ]  #
                ),
                #                 EvalCallback(),
                #                 GPUUtilizationTracker(),
                #                 PeakMemoryTracker(),
                #                 EstimatedTimeLeft(),