session_init=get_model_loader(args.load), input_names=['image'], output_names=get_model_output_names())) # autotune is too slow for inference os.environ['TF_CUDNN_USE_AUTOTUNE'] = '0' assert args.load offline_pred([pred], args.evaluate) else: logger.set_logger_dir(args.logdir) factor = get_batch_factor() stepnum = config.STEP_PER_EPOCH cfg = TrainConfig( model=get_model(), data=QueueInput(get_train_dataflow()), callbacks=[ PeriodicCallback(ModelSaver(max_to_keep=10, keep_checkpoint_every_n_hours=1), every_k_epochs=20), ScheduledHyperParamSetter('learning_rate', [(40, config.BASE_LR * 0.1), (60, config.BASE_LR * 0.01)]), #EvalCallback(), GPUUtilizationTracker(), PeakMemoryTracker(), EstimatedTimeLeft(), ], steps_per_epoch=stepnum, max_epoch=80, session_init=get_model_loader(args.load) if args.load else None,
session_init=get_model_loader(args.load), input_names=['image'], output_names=get_model_output_names())) # autotune is too slow for inference os.environ['TF_CUDNN_USE_AUTOTUNE'] = '0' assert args.load offline_pred([pred], args.evaluate) else: logger.set_logger_dir(args.logdir) factor = get_batch_factor() stepnum = config.STEP_PER_EPOCH cfg = TrainConfig( model=get_model(), data=QueueInput(get_train_dataflow()), #FeedInput QueueInput callbacks=[ PeriodicCallback(ModelSaver(max_to_keep=10, keep_checkpoint_every_n_hours=0.5), every_k_epochs=1), ScheduledHyperParamSetter( 'learning_rate', [ (30, config.BASE_LR * 0.1), # (60, config.BASE_LR * 0.01) ] # ), # EvalCallback(), # GPUUtilizationTracker(), # PeakMemoryTracker(), # EstimatedTimeLeft(),