Beispiel #1
0
 def __init__(self, args, is_training):
     df_train, self.num_train = lmdb_dataflow(args.lmdb_train, args.batch_size,
                                              args.num_input_points, args.num_gt_points, is_training=True)
     batch_train = get_queued_data(df_train.get_data(), [tf.string, tf.float32, tf.float32],
                                   [[args.batch_size],
                                    [args.batch_size, args.num_input_points, 3],
                                    [args.batch_size, args.num_gt_points, 3]])
     df_valid, self.num_valid = lmdb_dataflow(args.lmdb_valid, args.batch_size,
                                              args.num_input_points, args.num_gt_points, is_training=False)
     batch_valid = get_queued_data(df_valid.get_data(), [tf.string, tf.float32, tf.float32],
                                   [[args.batch_size],
                                    [args.batch_size, args.num_input_points, 3],
                                    [args.batch_size, args.num_gt_points, 3]])
     self.batch_data = tf.cond(is_training, lambda: batch_train, lambda: batch_valid)
 def __init__(self, args, is_training):
     df_test, self.num_test = lmdb_dataflow(args.lmdb_test,
                                            args.batch_size,
                                            args.num_input_points,
                                            args.num_gt_points,
                                            is_training=False)
     batch_test = get_queued_data(
         df_test.get_data(), [tf.string, tf.float32, tf.float32],
         [[args.batch_size], [args.batch_size, args.num_input_points, 3],
          [args.batch_size, args.num_gt_points, 3]])
     self.batch_data = batch_test