def __init__(self, args, is_training): df_train, self.num_train = lmdb_dataflow(args.lmdb_train, args.batch_size, args.num_input_points, args.num_gt_points, is_training=True) batch_train = get_queued_data(df_train.get_data(), [tf.string, tf.float32, tf.float32], [[args.batch_size], [args.batch_size, args.num_input_points, 3], [args.batch_size, args.num_gt_points, 3]]) df_valid, self.num_valid = lmdb_dataflow(args.lmdb_valid, args.batch_size, args.num_input_points, args.num_gt_points, is_training=False) batch_valid = get_queued_data(df_valid.get_data(), [tf.string, tf.float32, tf.float32], [[args.batch_size], [args.batch_size, args.num_input_points, 3], [args.batch_size, args.num_gt_points, 3]]) self.batch_data = tf.cond(is_training, lambda: batch_train, lambda: batch_valid)
def __init__(self, args, is_training): df_test, self.num_test = lmdb_dataflow(args.lmdb_test, args.batch_size, args.num_input_points, args.num_gt_points, is_training=False) batch_test = get_queued_data( df_test.get_data(), [tf.string, tf.float32, tf.float32], [[args.batch_size], [args.batch_size, args.num_input_points, 3], [args.batch_size, args.num_gt_points, 3]]) self.batch_data = batch_test