Beispiel #1
0
def test_coco_decoder(config):
    db = coco(config, 'train', '2017')
    all_tables = AllCategoriesTables(db)
    all_tables.build_nntables_for_all_categories(True)
    sequence_db = sequence_loader(db, all_tables)

    text_encoder = TextEncoder(db)
    img_encoder = VolumeEncoder(config)
    what_decoder = WhatDecoder(config)
    where_decoder = WhereDecoder(config)

    print('txt_encoder', get_n_params(text_encoder))
    print('img_encoder', get_n_params(img_encoder))
    print('what_decoder', get_n_params(what_decoder))
    print('where_decoder', get_n_params(where_decoder))

    loader = DataLoader(sequence_db,
                        batch_size=config.batch_size,
                        shuffle=False,
                        num_workers=config.num_workers)

    for cnt, batched in enumerate(loader):
        word_inds = batched['word_inds'].long()
        word_lens = batched['word_lens'].long()
        bg_imgs = batched['background'].float()

        encoder_states = text_encoder(word_inds, word_lens)
        bg_feats = img_encoder(bg_imgs)
        prev_bgfs = bg_feats[:, 0].unsqueeze(1)
        what_outs = what_decoder((prev_bgfs, None, None), encoder_states)
        obj_logits, rnn_feats_2d, nxt_hids_2d, prev_bgfs, att_ctx, att_wei = what_outs
        print('------------------------------------------')
        print('obj_logits', obj_logits.size())
        print('rnn_feats_2d', rnn_feats_2d.size())
        print('nxt_hids_2d', nxt_hids_2d.size())
        print('prev_bgfs', prev_bgfs.size())
        print('att_ctx', att_ctx.size())
        print('att_wei', att_wei.size())
        print('------------------------------------------')

        _, obj_inds = torch.max(obj_logits + 1.0, dim=-1)
        curr_fgfs = indices2onehots(obj_inds.cpu().data,
                                    config.output_vocab_size)
        # curr_fgfs = curr_fgfs.unsqueeze(1)
        if config.cuda:
            curr_fgfs = curr_fgfs.cuda()

        where_outs = where_decoder(
            (rnn_feats_2d, curr_fgfs, prev_bgfs, att_ctx), encoder_states)
        coord_logits, attri_logits, patch_vectors, where_ctx, where_wei = where_outs
        print('coord_logits ', coord_logits.size())
        print('attri_logits ', attri_logits.size())
        print('patch_vectors', patch_vectors.size())
        # print('att_ctx', where_ctx.size())
        # print('att_wei', where_wei.size())
        break
Beispiel #2
0
def test_vol_encoder(config):
    db = coco(config, 'train', '2017')

    all_tables = AllCategoriesTables(db)
    all_tables.build_nntables_for_all_categories(True)
    sequence_db = sequence_loader(db, all_tables)

    img_encoder = VolumeEncoder(config)
    print(get_n_params(img_encoder))
    # print(img_encoder)

    loader = DataLoader(sequence_db,
                        batch_size=config.batch_size,
                        shuffle=False,
                        num_workers=config.num_workers)

    for cnt, batched in enumerate(loader):
        x = batched['background'].float()
        y = img_encoder(x)
        print('y.size()', y.size())
        break
Beispiel #3
0
def test_shape_encoder(config):
    db = coco(config, 'train', '2017')
    all_tables = AllCategoriesTables(db)
    all_tables.build_nntables_for_all_categories(True)
    sequence_db = sequence_loader(db, all_tables)

    img_encoder = ShapeEncoder(config)
    print(get_n_params(img_encoder))

    loader = DataLoader(sequence_db,
                        batch_size=config.batch_size,
                        shuffle=False,
                        num_workers=config.num_workers)

    for cnt, batched in enumerate(loader):
        x = batched['foreground'].float()
        y = batched['foreground_resnets'].float()
        y = img_encoder(x, y)
        print('y.size()', y.size())
        print('y max', torch.max(y))
        print('y min', torch.min(y))
        print('y norm', torch.norm(y, dim=-1)[0, 0])
        break
    def sample_for_vis(self,
                       epoch,
                       test_db,
                       N,
                       random_or_not=False,
                       nn_table=None):
        ##############################################################
        # Output prefix
        ##############################################################
        output_dir = osp.join(self.cfg.model_dir, '%03d' % epoch, 'vis')
        maybe_create(output_dir)

        seq_db = sequence_loader(test_db)

        ##############################################################
        # Main loop
        ##############################################################
        plt.switch_backend('agg')
        if random_or_not:
            indices = np.random.permutation(range(len(test_db.scenedb)))
        else:
            indices = range(len(test_db.scenedb))
        indices = indices[:min(N, len(test_db.scenedb))]

        if self.cfg.cuda and self.cfg.parallel:
            net = self.net.module
        else:
            net = self.net

        for i in indices:
            entry = seq_db[i]
            gt_scene = test_db.scenedb[i]
            image_index = gt_scene['image_index']
            image_path = test_db.color_path_from_index(image_index)

            gt_img = cv2.imread(image_path, cv2.IMREAD_COLOR)
            gt_img, _, _ = create_squared_image(gt_img)
            gt_img = cv2.resize(
                gt_img,
                (self.cfg.input_image_size[0], self.cfg.input_image_size[1]))

            ##############################################################
            # Inputs
            ##############################################################
            input_inds_np = np.array(entry['word_inds'])
            input_lens_np = np.array(entry['word_lens'])
            input_inds = torch.from_numpy(input_inds_np).long().unsqueeze(0)
            input_lens = torch.from_numpy(input_lens_np).long().unsqueeze(0)

            if self.cfg.cuda:
                input_inds = input_inds.cuda()
                input_lens = input_lens.cuda()
            ##############################################################
            # Inference
            ##############################################################
            self.net.eval()
            with torch.no_grad():
                inf_outs, env = net.inference(input_inds, input_lens, -1, 1.0,
                                              0, None, None, nn_table)
            frames, _, _, _, _ = env.batch_redraw(return_sequence=True)
            frames = frames[0]
            _, _, _, _, _, what_wei, where_wei = inf_outs

            if self.cfg.what_attn:
                what_attn_words = self.decode_attention(
                    input_inds_np, input_lens_np, what_wei.squeeze(0))
            if self.cfg.where_attn > 0:
                where_attn_words = self.decode_attention(
                    input_inds_np, input_lens_np, where_wei.squeeze(0))

            ##############################################################
            # Draw
            ##############################################################
            fig = plt.figure(figsize=(32, 32))
            plt.suptitle(entry['sentence'], fontsize=40)
            for j in range(len(frames)):
                subtitle = ''
                if self.cfg.what_attn:
                    subtitle = subtitle + ' '.join(what_attn_words[j])
                if self.cfg.where_attn > 0:
                    subtitle = subtitle + '\n' + ' '.join(where_attn_words[j])

                plt.subplot(4, 4, j + 1)
                plt.title(subtitle, fontsize=30)
                if self.cfg.use_color_volume:
                    vis_img, _ = heuristic_collage(frames[j], 83)
                else:
                    vis_img = frames[j][:, :, -3:]
                vis_img = clamp_array(vis_img[:, :, ::-1], 0,
                                      255).astype(np.uint8)
                plt.imshow(vis_img)
                plt.axis('off')
            plt.subplot(4, 4, 16)
            plt.imshow(gt_img[:, :, ::-1])
            plt.axis('off')

            name = osp.splitext(osp.basename(image_path))[0]
            out_path = osp.join(output_dir, name + '.png')
            fig.savefig(out_path, bbox_inches='tight')
            plt.close(fig)
            print('sampling: %d, %d' % (epoch, i))
    def sample_for_eval(self, test_db, nn_table=None):
        ##############################################################
        # Output prefix
        ##############################################################
        # gt_dir    = osp.join(self.cfg.model_dir, 'gt')
        # frame_dir = osp.join(self.cfg.model_dir, 'proposal_images')
        # noice_dir = osp.join(self.cfg.model_dir, 'proposal_noices')
        # label_dir = osp.join(self.cfg.model_dir, 'proposal_labels')
        # mask_dir  = osp.join(self.cfg.model_dir, 'proposal_masks')
        # info_dir  = osp.join(self.cfg.model_dir, 'proposal_info')

        main_dir = 'puzzle_results'
        maybe_create(main_dir)

        gt_dir = osp.join(main_dir, 'gt')
        frame_dir = osp.join(main_dir, 'proposal_images')
        noice_dir = osp.join(main_dir, 'proposal_noices')
        label_dir = osp.join(main_dir, 'proposal_labels')
        mask_dir = osp.join(main_dir, 'proposal_masks')
        info_dir = osp.join(main_dir, 'proposal_info')

        maybe_create(gt_dir)
        maybe_create(frame_dir)
        maybe_create(noice_dir)
        maybe_create(label_dir)
        maybe_create(mask_dir)
        maybe_create(info_dir)

        seq_db = sequence_loader(test_db)
        ##############################################################
        # Main loop
        ##############################################################
        if self.cfg.cuda and self.cfg.parallel:
            net = self.net.module
        else:
            net = self.net
        # start_ind = 0
        # end_ind = len(seq_db)
        start_ind = self.cfg.seed * 1250
        end_ind = (self.cfg.seed + 1) * 1250
        # start_ind = 35490
        # end_ind = len(seq_db)
        for i in range(start_ind, end_ind):
            entry = seq_db[i]
            gt_scene = test_db.scenedb[i]
            image_index = gt_scene['image_index']
            image_path = test_db.color_path_from_index(image_index)
            name = osp.splitext(osp.basename(image_path))[0]
            gt_path = osp.join(gt_dir, osp.basename(image_path))
            # save gt
            shutil.copy2(image_path, gt_path)

            ##############################################################
            # Inputs
            ##############################################################
            input_inds_np = np.array(entry['word_inds'])
            input_lens_np = np.array(entry['word_lens'])
            input_inds = torch.from_numpy(input_inds_np).long().unsqueeze(0)
            input_lens = torch.from_numpy(input_lens_np).long().unsqueeze(0)
            if self.cfg.cuda:
                input_inds = input_inds.cuda()
                input_lens = input_lens.cuda()
            ##############################################################
            # Inference
            ##############################################################
            self.net.eval()
            with torch.no_grad():
                inf_outs, env = net.inference(input_inds, input_lens, -1, 1.0,
                                              0, None, None, nn_table)
            frame, noice, mask, label, env_info = env.batch_redraw(
                return_sequence=False)
            frame = frame[0][0]
            noice = noice[0][0]
            mask = mask[0][0]
            label = label[0][0]
            env_info = env_info[0]
            frame_path = osp.join(frame_dir, name + '.jpg')
            noice_path = osp.join(noice_dir, name + '.jpg')
            mask_path = osp.join(mask_dir, name + '.png')
            label_path = osp.join(label_dir, name + '.png')
            info_path = osp.join(info_dir, name + '.json')

            if self.cfg.use_color_volume:
                frame, _ = heuristic_collage(frame, 83)
                noice, _ = heuristic_collage(noice, 83)
            else:
                frame = frame[:, :, -3:]
                noice = noice[:, :, -3:]
            cv2.imwrite(frame_path,
                        clamp_array(frame, 0, 255).astype(np.uint8))
            cv2.imwrite(noice_path,
                        clamp_array(noice, 0, 255).astype(np.uint8))
            cv2.imwrite(mask_path, clamp_array(255 * mask, 0, 255))
            cv2.imwrite(label_path, label)

            # info
            pred_info = {}
            pred_info['width'] = env_info['width']
            pred_info['height'] = env_info['height']
            pred_info['clses'] = env_info['clses'].tolist()
            pred_info['boxes'] = [x.tolist() for x in env_info['boxes']]
            current_patches = env_info['patches']
            current_image_indices = []
            current_instance_inds = []
            for j in range(len(pred_info['clses'])):
                current_image_indices.append(current_patches[j]['image_index'])
                current_instance_inds.append(
                    current_patches[j]['instance_ind'])
            pred_info['image_indices'] = current_image_indices
            pred_info['instance_inds'] = current_instance_inds
            with open(info_path, 'w') as fp:
                json.dump(pred_info, fp, indent=4, sort_keys=True)
            print('sampling: %d, %s' % (i, name))
    def validate_epoch(self, val_db, epoch):
        if self.cfg.cuda and self.cfg.parallel:
            net = self.net.module
        else:
            net = self.net

        all_losses, all_accuracies = [], []
        # initial experiment, just use one group of sentence
        for G in range(5):
            val_db.cfg.sent_group = G
            # if epoch == 0:
            #     seq_db = sequence_loader(val_db)
            # else:
            #     seq_db = sequence_loader(val_db, self.val_tables)
            # seq_db = sequence_loader(val_db, self.val_tables)
            if self.cfg.use_hard_mining:
                seq_db = sequence_loader(val_db, self.val_tables)
            else:
                seq_db = sequence_loader(val_db)
            val_loader = DataLoader(seq_db,
                                    batch_size=self.cfg.batch_size,
                                    shuffle=False,
                                    num_workers=self.cfg.num_workers,
                                    pin_memory=True)

            for cnt, batched in enumerate(val_loader):
                ##################################################################
                ## Batched data
                ##################################################################
                input_inds, input_lens, fg_onehots, bg_imgs, \
                fg_imgs, neg_imgs, fg_resnets, neg_resnets,\
                gt_inds, gt_msks, patch_inds = \
                    self.batch_data(batched)

                ##################################################################
                ## Validate one step
                ##################################################################
                self.net.eval()
                with torch.no_grad():
                    inputs = (input_inds, input_lens, bg_imgs, fg_onehots,
                              fg_imgs, neg_imgs, fg_resnets, neg_resnets)
                    inf_outs, _, pos_vecs, neg_vecs = self.net(inputs)
                    if self.cfg.use_hard_mining:
                        pred_loss, embed_loss, attn_loss, pred_accu = self.evaluate(
                            inf_outs, pos_vecs, neg_vecs, gt_inds, gt_msks,
                            val_db, patch_inds)
                    else:
                        pred_loss, embed_loss, attn_loss, pred_accu = self.evaluate(
                            inf_outs, pos_vecs, neg_vecs, gt_inds, gt_msks)

                loss = pred_loss + embed_loss + attn_loss
                all_losses.append(
                    np.array([
                        loss.cpu().data.item(),
                        pred_loss.cpu().data.item(),
                        embed_loss.cpu().data.item(),
                        attn_loss.cpu().data.item()
                    ]))
                all_accuracies.append(pred_accu.cpu().data.numpy())
                print(epoch, G, cnt)

        all_losses = np.stack(all_losses, 0)
        all_accuracies = np.stack(all_accuracies, 0)

        return all_losses, all_accuracies
    def train_epoch(self, train_db, epoch):
        if self.cfg.cuda and self.cfg.parallel:
            net = self.net.module
        else:
            net = self.net

        train_db.cfg.sent_group = -1
        if self.cfg.use_hard_mining:
            seq_db = sequence_loader(train_db, self.train_tables)
        else:
            seq_db = sequence_loader(train_db)

        # if epoch == 0:
        #     seq_db = sequence_loader(train_db)
        # else:
        #     seq_db = sequence_loader(train_db, self.train_tables)
        # seq_db = sequence_loader(train_db, self.train_tables)
        train_loader = DataLoader(seq_db,
                                  batch_size=self.cfg.batch_size,
                                  shuffle=True,
                                  num_workers=self.cfg.num_workers,
                                  pin_memory=True)

        all_losses, all_accuracies = [], []

        for cnt, batched in enumerate(train_loader):
            ##################################################################
            ## Batched data
            ##################################################################
            input_inds, input_lens, fg_onehots, bg_imgs, \
            fg_imgs, neg_imgs, fg_resnets, neg_resnets,\
            gt_inds, gt_msks, patch_inds = \
                self.batch_data(batched)

            ##################################################################
            ## Train one step
            ##################################################################
            self.net.train()
            self.net.zero_grad()

            inputs = (input_inds, input_lens, bg_imgs, fg_onehots, fg_imgs,
                      neg_imgs, fg_resnets, neg_resnets)
            inf_outs, _, pos_vecs, neg_vecs = self.net(inputs)
            if self.cfg.use_hard_mining:
                pred_loss, embed_loss, attn_loss, pred_accu = self.evaluate(
                    inf_outs, pos_vecs, neg_vecs, gt_inds, gt_msks, train_db,
                    patch_inds)
            else:
                pred_loss, embed_loss, attn_loss, pred_accu = self.evaluate(
                    inf_outs, pos_vecs, neg_vecs, gt_inds, gt_msks)

            loss = pred_loss + embed_loss + attn_loss
            loss.backward()
            self.optimizer.step()

            ##################################################################
            ## Collect info
            ##################################################################
            all_losses.append(
                np.array([
                    loss.cpu().data.item(),
                    pred_loss.cpu().data.item(),
                    embed_loss.cpu().data.item(),
                    attn_loss.cpu().data.item()
                ]))
            all_accuracies.append(pred_accu.cpu().data.numpy())

            ##################################################################
            ## Print info
            ##################################################################
            if cnt % self.cfg.log_per_steps == 0:
                print('Epoch %03d, iter %07d:' % (epoch, cnt))
                tmp_losses = np.stack(all_losses, 0)
                tmp_accuracies = np.stack(all_accuracies, 0)
                print('losses: ', np.mean(tmp_losses[:, 0]),
                      np.mean(tmp_losses[:, 1]), np.mean(tmp_losses[:, 2]),
                      np.mean(tmp_losses[:, 3]))
                print('accuracies: ', np.mean(tmp_accuracies[:, 0]),
                      np.mean(tmp_accuracies[:, 1]),
                      np.mean(tmp_accuracies[:, 2]),
                      np.mean(tmp_accuracies[:, 3]))
                print('-------------------------')

        all_losses = np.stack(all_losses, 0)
        all_accuracies = np.stack(all_accuracies, 0)

        return all_losses, all_accuracies
Beispiel #8
0
def test_coco_dataloader(config):
    db = coco(config, 'train', '2017')

    all_tables = AllCategoriesTables(db)
    all_tables.build_nntables_for_all_categories(True)

    sequence_db = sequence_loader(db, all_tables)
    output_dir = osp.join(config.model_dir, 'test_coco_dataloader')
    maybe_create(output_dir)

    loader = DataLoader(sequence_db,
                        batch_size=config.batch_size,
                        shuffle=True,
                        num_workers=config.num_workers)

    start = time()
    for cnt, batched in enumerate(loader):
        x = batched['background'].float()
        y = batched['foreground'].float()
        z = batched['negative'].float()

        # x = sequence_onehot_volumn_preprocess(x, len(db.classes))
        x = sequence_color_volumn_preprocess(x, len(db.classes))
        y = sequence_onehot_volumn_preprocess(y, len(db.classes))
        z = sequence_onehot_volumn_preprocess(z, len(db.classes))

        # cv2.imwrite('mask0.png', y[0,2,:,:,-4].cpu().data.numpy())
        # cv2.imwrite('mask1.png', y[1,2,:,:,-4].cpu().data.numpy())
        # cv2.imwrite('mask2.png', y[2,2,:,:,-4].cpu().data.numpy())
        # cv2.imwrite('mask3.png', y[3,2,:,:,-4].cpu().data.numpy())
        # cv2.imwrite('label0.png', y[0,2,:,:,3].cpu().data.numpy())
        # cv2.imwrite('label1.png', y[1,2,:,:,3].cpu().data.numpy())
        # cv2.imwrite('label2.png', y[2,2,:,:,3].cpu().data.numpy())
        # cv2.imwrite('label3.png', y[3,2,:,:,3].cpu().data.numpy())
        # cv2.imwrite('color0.png', y[0,2,:,:,-3:].cpu().data.numpy())
        # cv2.imwrite('color1.png', y[1,2,:,:,-3:].cpu().data.numpy())
        # cv2.imwrite('color2.png', y[2,2,:,:,-3:].cpu().data.numpy())
        # cv2.imwrite('color3.png', y[3,2,:,:,-3:].cpu().data.numpy())
        # cv2.imwrite('bg0.png', x[0,3,:,:,9:12].cpu().data.numpy())
        # cv2.imwrite('bg1.png', x[1,3,:,:,9:12].cpu().data.numpy())
        # cv2.imwrite('bg2.png', x[2,3,:,:,9:12].cpu().data.numpy())
        # cv2.imwrite('bg3.png', x[3,3,:,:,9:12].cpu().data.numpy())

        x = (x - 128.0).permute(0, 1, 4, 2, 3)
        y = (y - 128.0).permute(0, 1, 4, 2, 3)
        z = (z - 128.0).permute(0, 1, 4, 2, 3)

        print('background', x.size())
        print('foreground', y.size())
        print('negative', z.size())
        print('word_inds', batched['word_inds'].size())
        print('word_lens', batched['word_lens'].size())
        print('fg_inds', batched['fg_inds'].size())
        print('patch_inds', batched['patch_inds'].size())
        print('out_inds', batched['out_inds'].size())
        print('out_msks', batched['out_msks'].size())
        print('foreground_resnets', batched['foreground_resnets'].size())
        print('negative_resnets', batched['negative_resnets'].size())

        print('foreground_resnets', batched['foreground_resnets'][0, 0])
        print('negative_resnets', batched['negative_resnets'][0, 0])
        print('out_msks', batched['out_msks'][0])
        print('patch_inds', batched['patch_inds'][0])

        plt.switch_backend('agg')
        bg_images = x
        fg_images = y
        neg_images = z

        bsize, ssize, n, h, w = bg_images.size()
        bg_images = bg_images.view(bsize * ssize, n, h, w)
        bg_images = tensors_to_vols(bg_images)
        bg_images = bg_images.reshape(bsize, ssize, h, w, n)

        bsize, ssize, n, h, w = fg_images.size()
        fg_images = fg_images.view(bsize * ssize, n, h, w)
        fg_images = tensors_to_vols(fg_images)
        fg_images = fg_images.reshape(bsize, ssize, h, w, n)

        bsize, ssize, n, h, w = neg_images.size()
        neg_images = neg_images.view(bsize * ssize, n, h, w)
        neg_images = tensors_to_vols(neg_images)
        neg_images = neg_images.reshape(bsize, ssize, h, w, n)

        for i in range(bsize):
            bg_seq = bg_images[i]
            fg_seq = fg_images[i]
            neg_seq = neg_images[i]
            image_idx = batched['image_index'][i]
            fg_inds = batched['fg_inds'][i]
            name = '%03d_' % i + str(image_idx).zfill(12)
            out_path = osp.join(output_dir, name + '.png')
            color = cv2.imread(batched['image_path'][i], cv2.IMREAD_COLOR)
            color, _, _ = create_squared_image(color)

            fig = plt.figure(figsize=(48, 32))
            plt.suptitle(batched['sentence'][i], fontsize=30)

            for j in range(min(len(bg_seq), 15)):
                bg, _ = heuristic_collage(bg_seq[j], 83)
                bg_mask = 255 * np.ones((bg.shape[1], bg.shape[0]))
                row, col = np.where(np.sum(np.absolute(bg), -1) == 0)
                bg_mask[row, col] = 0
                # bg = bg_seq[j][:,:,-3:]
                # bg_mask = bg_seq[j][:,:,-4]
                bg_mask = np.repeat(bg_mask[..., None], 3, -1)
                fg_color = fg_seq[j][:, :, -3:]
                # fg_mask = fg_seq[j][:,:,fg_inds[j+1]]
                fg_mask = fg_seq[j][:, :, -4]
                neg_color = neg_seq[j][:, :, -3:]
                # neg_mask = neg_seq[j][:,:,fg_inds[j+1]]
                neg_mask = neg_seq[j][:, :, -4]

                color_pair = np.concatenate((fg_color, neg_color), 1)
                mask_pair = np.concatenate((fg_mask, neg_mask), 1)
                mask_pair = np.repeat(mask_pair[..., None], 3, -1)
                patch = np.concatenate((color_pair, mask_pair), 0)
                patch = cv2.resize(patch, (bg.shape[1], bg.shape[0]))

                partially_completed_img = np.concatenate((bg, bg_mask, patch),
                                                         1)
                partially_completed_img = clamp_array(partially_completed_img,
                                                      0, 255).astype(np.uint8)
                partially_completed_img = partially_completed_img[:, :, ::-1]
                plt.subplot(4, 4, j + 1)
                plt.imshow(partially_completed_img)
                plt.axis('off')

            plt.subplot(4, 4, 16)
            plt.imshow(color[:, :, ::-1])
            plt.axis('off')

            fig.savefig(out_path, bbox_inches='tight')
            plt.close(fig)

        if cnt == 3:
            break
    print("Time", time() - start)
Beispiel #9
0
def test_step_by_step(config):
    db = coco(config, 'train', '2017')
    output_dir = osp.join(config.model_dir, 'test_step_by_step')
    maybe_create(output_dir)

    all_tables = AllCategoriesTables(db)
    all_tables.build_nntables_for_all_categories(True)

    seq_db = sequence_loader(db, all_tables)
    env = simulator(db, config.batch_size, all_tables)
    env.reset()

    loader = DataLoader(seq_db,
                        batch_size=config.batch_size,
                        shuffle=True,
                        num_workers=config.num_workers)

    for cnt, batched in enumerate(loader):
        out_inds = batched['out_inds'].long().numpy()
        out_vecs = batched['out_vecs'].float().numpy()

        sequences = []
        for i in range(out_inds.shape[1]):
            frames = env.batch_render_to_pytorch(out_inds[:, i], out_vecs[:,
                                                                          i])
            sequences.append(frames)
        sequences = torch.stack(sequences, dim=1)
        # sequences = [tensors_to_vols(x) for x in sequences]

        for i in range(len(sequences)):
            sequence = sequences[i]
            image_idx = batched['image_index'][i]
            name = '%03d_' % i + str(image_idx).zfill(12)
            out_path = osp.join(output_dir, name + '.png')
            color = cv2.imread(batched['image_path'][i], cv2.IMREAD_COLOR)
            color, _, _ = create_squared_image(color)

            fig = plt.figure(figsize=(32, 32))
            plt.suptitle(batched['sentence'][i], fontsize=30)

            for j in range(min(len(sequence), 14)):
                plt.subplot(4, 4, j + 1)
                seq_np = sequence[j].cpu().data.numpy()
                if config.use_color_volume:
                    partially_completed_img, _ = heuristic_collage(seq_np, 83)
                else:
                    partially_completed_img = seq_np[:, :, -3:]
                partially_completed_img = clamp_array(partially_completed_img,
                                                      0, 255).astype(np.uint8)
                partially_completed_img = partially_completed_img[:, :, ::-1]
                plt.imshow(partially_completed_img)
                plt.axis('off')

            plt.subplot(4, 4, 16)
            plt.imshow(color[:, :, ::-1])
            plt.axis('off')

            fig.savefig(out_path, bbox_inches='tight')
            plt.close(fig)

        break
def test_puzzle_model(config):
    output_dir = osp.join(config.model_dir, 'test_puzzle_model')
    maybe_create(output_dir)
    plt.switch_backend('agg')

    db = coco(config, 'train', '2017')
    all_tables = AllCategoriesTables(db)
    all_tables.build_nntables_for_all_categories(True)
    sequence_db = sequence_loader(db, all_tables)
    loader = DataLoader(sequence_db,
        batch_size=config.batch_size, shuffle=False,
        num_workers=config.num_workers)

    net = PuzzleModel(db)

    net.eval()
    for cnt, batched in enumerate(loader):
        word_inds = batched['word_inds'].long()
        word_lens = batched['word_lens'].long()
        bg_images = batched['background'].float()
        fg_images = batched['foreground'].float()
        neg_images = batched['negative'].float()

        fg_resnets = batched['foreground_resnets'].float()
        neg_resnets = batched['negative_resnets'].float()

        fg_inds = batched['fg_inds'].long()
        gt_inds = batched['out_inds'].long()
        gt_msks = batched['out_msks'].float()

        fg_onehots = indices2onehots(fg_inds, config.output_vocab_size)

        inf_outs, _, positive_feats, negative_feats = net((word_inds, word_lens, bg_images, fg_onehots, fg_images, neg_images, fg_resnets, neg_resnets))
        obj_logits, coord_logits, attri_logits, patch_vectors, enc_msks, what_wei, where_wei = inf_outs
        print('teacher forcing')
        print('obj_logits ', obj_logits.size())
        print('coord_logits ', coord_logits.size())
        print('attri_logits ', attri_logits.size())
        print('patch_vectors ', patch_vectors.size())
        print('patch_vectors max:', torch.max(patch_vectors))
        print('patch_vectors min:', torch.min(patch_vectors))
        print('patch_vectors norm:', torch.norm(patch_vectors, dim=-2)[0,0,0])
        print('positive_feats ', positive_feats.size())
        print('negative_feats ', negative_feats.size())
        if config.what_attn:
            print('what_att_logits ', what_wei.size())
        if config.where_attn > 0:
            print('where_att_logits ', where_wei.size())
        print('----------------------')

        _, pred_vecs = net.collect_logits_and_vectors(inf_outs, gt_inds)
        print('pred_vecs', pred_vecs.size())
        print('*******************')

        # # inf_outs, env = net.inference(word_inds, word_lens, -1, 0.0, 0, gt_inds, gt_vecs)
        # inf_outs, env = net.inference(word_inds, word_lens, -1, 2.0, 0, None, None, all_tables)
        # obj_logits, coord_logits, attri_logits, patch_vectors, enc_msks, what_wei, where_wei = inf_outs
        # print('scheduled sampling')
        # print('obj_logits ', obj_logits.size())
        # print('coord_logits ', coord_logits.size())
        # print('attri_logits ', attri_logits.size())
        # print('patch_vectors ', patch_vectors.size())
        # if config.what_attn:
        #     print('what_att_logits ', what_wei.size())
        # if config.where_attn > 0:
        #     print('where_att_logits ', where_wei.size())
        # print('----------------------')
        
        
        # sequences = env.batch_redraw(True)
        # for i in range(len(sequences)):
        #     sequence = sequences[i]
        #     image_idx = batched['image_index'][i]
        #     name = '%03d_'%i + str(image_idx).zfill(12)
        #     out_path = osp.join(output_dir, name+'.png')
        #     color = cv2.imread(batched['color_path'][i], cv2.IMREAD_COLOR)
        #     color, _, _ = create_squared_image(color)
        
        #     fig = plt.figure(figsize=(32, 16))
        #     plt.suptitle(batched['sentence'][i], fontsize=30)
        
        #     for j in range(min(len(sequence), 14)):
        #         plt.subplot(3, 5, j+1)
        #         partially_completed_img = clamp_array(sequence[j][:,:,-3:], 0, 255).astype(np.uint8)
        #         partially_completed_img = partially_completed_img[:,:,::-1]
        #         plt.imshow(partially_completed_img)
        #         plt.axis('off')
        
        #     plt.subplot(3, 5, 15)
        #     plt.imshow(color[:,:,::-1])
        #     plt.axis('off')
        
        #     fig.savefig(out_path, bbox_inches='tight')
        #     plt.close(fig)

        break