def test_coco_decoder(config): db = coco(config, 'train', '2017') all_tables = AllCategoriesTables(db) all_tables.build_nntables_for_all_categories(True) sequence_db = sequence_loader(db, all_tables) text_encoder = TextEncoder(db) img_encoder = VolumeEncoder(config) what_decoder = WhatDecoder(config) where_decoder = WhereDecoder(config) print('txt_encoder', get_n_params(text_encoder)) print('img_encoder', get_n_params(img_encoder)) print('what_decoder', get_n_params(what_decoder)) print('where_decoder', get_n_params(where_decoder)) loader = DataLoader(sequence_db, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) for cnt, batched in enumerate(loader): word_inds = batched['word_inds'].long() word_lens = batched['word_lens'].long() bg_imgs = batched['background'].float() encoder_states = text_encoder(word_inds, word_lens) bg_feats = img_encoder(bg_imgs) prev_bgfs = bg_feats[:, 0].unsqueeze(1) what_outs = what_decoder((prev_bgfs, None, None), encoder_states) obj_logits, rnn_feats_2d, nxt_hids_2d, prev_bgfs, att_ctx, att_wei = what_outs print('------------------------------------------') print('obj_logits', obj_logits.size()) print('rnn_feats_2d', rnn_feats_2d.size()) print('nxt_hids_2d', nxt_hids_2d.size()) print('prev_bgfs', prev_bgfs.size()) print('att_ctx', att_ctx.size()) print('att_wei', att_wei.size()) print('------------------------------------------') _, obj_inds = torch.max(obj_logits + 1.0, dim=-1) curr_fgfs = indices2onehots(obj_inds.cpu().data, config.output_vocab_size) # curr_fgfs = curr_fgfs.unsqueeze(1) if config.cuda: curr_fgfs = curr_fgfs.cuda() where_outs = where_decoder( (rnn_feats_2d, curr_fgfs, prev_bgfs, att_ctx), encoder_states) coord_logits, attri_logits, patch_vectors, where_ctx, where_wei = where_outs print('coord_logits ', coord_logits.size()) print('attri_logits ', attri_logits.size()) print('patch_vectors', patch_vectors.size()) # print('att_ctx', where_ctx.size()) # print('att_wei', where_wei.size()) break
def test_vol_encoder(config): db = coco(config, 'train', '2017') all_tables = AllCategoriesTables(db) all_tables.build_nntables_for_all_categories(True) sequence_db = sequence_loader(db, all_tables) img_encoder = VolumeEncoder(config) print(get_n_params(img_encoder)) # print(img_encoder) loader = DataLoader(sequence_db, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) for cnt, batched in enumerate(loader): x = batched['background'].float() y = img_encoder(x) print('y.size()', y.size()) break
def test_shape_encoder(config): db = coco(config, 'train', '2017') all_tables = AllCategoriesTables(db) all_tables.build_nntables_for_all_categories(True) sequence_db = sequence_loader(db, all_tables) img_encoder = ShapeEncoder(config) print(get_n_params(img_encoder)) loader = DataLoader(sequence_db, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) for cnt, batched in enumerate(loader): x = batched['foreground'].float() y = batched['foreground_resnets'].float() y = img_encoder(x, y) print('y.size()', y.size()) print('y max', torch.max(y)) print('y min', torch.min(y)) print('y norm', torch.norm(y, dim=-1)[0, 0]) break
def sample_for_vis(self, epoch, test_db, N, random_or_not=False, nn_table=None): ############################################################## # Output prefix ############################################################## output_dir = osp.join(self.cfg.model_dir, '%03d' % epoch, 'vis') maybe_create(output_dir) seq_db = sequence_loader(test_db) ############################################################## # Main loop ############################################################## plt.switch_backend('agg') if random_or_not: indices = np.random.permutation(range(len(test_db.scenedb))) else: indices = range(len(test_db.scenedb)) indices = indices[:min(N, len(test_db.scenedb))] if self.cfg.cuda and self.cfg.parallel: net = self.net.module else: net = self.net for i in indices: entry = seq_db[i] gt_scene = test_db.scenedb[i] image_index = gt_scene['image_index'] image_path = test_db.color_path_from_index(image_index) gt_img = cv2.imread(image_path, cv2.IMREAD_COLOR) gt_img, _, _ = create_squared_image(gt_img) gt_img = cv2.resize( gt_img, (self.cfg.input_image_size[0], self.cfg.input_image_size[1])) ############################################################## # Inputs ############################################################## input_inds_np = np.array(entry['word_inds']) input_lens_np = np.array(entry['word_lens']) input_inds = torch.from_numpy(input_inds_np).long().unsqueeze(0) input_lens = torch.from_numpy(input_lens_np).long().unsqueeze(0) if self.cfg.cuda: input_inds = input_inds.cuda() input_lens = input_lens.cuda() ############################################################## # Inference ############################################################## self.net.eval() with torch.no_grad(): inf_outs, env = net.inference(input_inds, input_lens, -1, 1.0, 0, None, None, nn_table) frames, _, _, _, _ = env.batch_redraw(return_sequence=True) frames = frames[0] _, _, _, _, _, what_wei, where_wei = inf_outs if self.cfg.what_attn: what_attn_words = self.decode_attention( input_inds_np, input_lens_np, what_wei.squeeze(0)) if self.cfg.where_attn > 0: where_attn_words = self.decode_attention( input_inds_np, input_lens_np, where_wei.squeeze(0)) ############################################################## # Draw ############################################################## fig = plt.figure(figsize=(32, 32)) plt.suptitle(entry['sentence'], fontsize=40) for j in range(len(frames)): subtitle = '' if self.cfg.what_attn: subtitle = subtitle + ' '.join(what_attn_words[j]) if self.cfg.where_attn > 0: subtitle = subtitle + '\n' + ' '.join(where_attn_words[j]) plt.subplot(4, 4, j + 1) plt.title(subtitle, fontsize=30) if self.cfg.use_color_volume: vis_img, _ = heuristic_collage(frames[j], 83) else: vis_img = frames[j][:, :, -3:] vis_img = clamp_array(vis_img[:, :, ::-1], 0, 255).astype(np.uint8) plt.imshow(vis_img) plt.axis('off') plt.subplot(4, 4, 16) plt.imshow(gt_img[:, :, ::-1]) plt.axis('off') name = osp.splitext(osp.basename(image_path))[0] out_path = osp.join(output_dir, name + '.png') fig.savefig(out_path, bbox_inches='tight') plt.close(fig) print('sampling: %d, %d' % (epoch, i))
def sample_for_eval(self, test_db, nn_table=None): ############################################################## # Output prefix ############################################################## # gt_dir = osp.join(self.cfg.model_dir, 'gt') # frame_dir = osp.join(self.cfg.model_dir, 'proposal_images') # noice_dir = osp.join(self.cfg.model_dir, 'proposal_noices') # label_dir = osp.join(self.cfg.model_dir, 'proposal_labels') # mask_dir = osp.join(self.cfg.model_dir, 'proposal_masks') # info_dir = osp.join(self.cfg.model_dir, 'proposal_info') main_dir = 'puzzle_results' maybe_create(main_dir) gt_dir = osp.join(main_dir, 'gt') frame_dir = osp.join(main_dir, 'proposal_images') noice_dir = osp.join(main_dir, 'proposal_noices') label_dir = osp.join(main_dir, 'proposal_labels') mask_dir = osp.join(main_dir, 'proposal_masks') info_dir = osp.join(main_dir, 'proposal_info') maybe_create(gt_dir) maybe_create(frame_dir) maybe_create(noice_dir) maybe_create(label_dir) maybe_create(mask_dir) maybe_create(info_dir) seq_db = sequence_loader(test_db) ############################################################## # Main loop ############################################################## if self.cfg.cuda and self.cfg.parallel: net = self.net.module else: net = self.net # start_ind = 0 # end_ind = len(seq_db) start_ind = self.cfg.seed * 1250 end_ind = (self.cfg.seed + 1) * 1250 # start_ind = 35490 # end_ind = len(seq_db) for i in range(start_ind, end_ind): entry = seq_db[i] gt_scene = test_db.scenedb[i] image_index = gt_scene['image_index'] image_path = test_db.color_path_from_index(image_index) name = osp.splitext(osp.basename(image_path))[0] gt_path = osp.join(gt_dir, osp.basename(image_path)) # save gt shutil.copy2(image_path, gt_path) ############################################################## # Inputs ############################################################## input_inds_np = np.array(entry['word_inds']) input_lens_np = np.array(entry['word_lens']) input_inds = torch.from_numpy(input_inds_np).long().unsqueeze(0) input_lens = torch.from_numpy(input_lens_np).long().unsqueeze(0) if self.cfg.cuda: input_inds = input_inds.cuda() input_lens = input_lens.cuda() ############################################################## # Inference ############################################################## self.net.eval() with torch.no_grad(): inf_outs, env = net.inference(input_inds, input_lens, -1, 1.0, 0, None, None, nn_table) frame, noice, mask, label, env_info = env.batch_redraw( return_sequence=False) frame = frame[0][0] noice = noice[0][0] mask = mask[0][0] label = label[0][0] env_info = env_info[0] frame_path = osp.join(frame_dir, name + '.jpg') noice_path = osp.join(noice_dir, name + '.jpg') mask_path = osp.join(mask_dir, name + '.png') label_path = osp.join(label_dir, name + '.png') info_path = osp.join(info_dir, name + '.json') if self.cfg.use_color_volume: frame, _ = heuristic_collage(frame, 83) noice, _ = heuristic_collage(noice, 83) else: frame = frame[:, :, -3:] noice = noice[:, :, -3:] cv2.imwrite(frame_path, clamp_array(frame, 0, 255).astype(np.uint8)) cv2.imwrite(noice_path, clamp_array(noice, 0, 255).astype(np.uint8)) cv2.imwrite(mask_path, clamp_array(255 * mask, 0, 255)) cv2.imwrite(label_path, label) # info pred_info = {} pred_info['width'] = env_info['width'] pred_info['height'] = env_info['height'] pred_info['clses'] = env_info['clses'].tolist() pred_info['boxes'] = [x.tolist() for x in env_info['boxes']] current_patches = env_info['patches'] current_image_indices = [] current_instance_inds = [] for j in range(len(pred_info['clses'])): current_image_indices.append(current_patches[j]['image_index']) current_instance_inds.append( current_patches[j]['instance_ind']) pred_info['image_indices'] = current_image_indices pred_info['instance_inds'] = current_instance_inds with open(info_path, 'w') as fp: json.dump(pred_info, fp, indent=4, sort_keys=True) print('sampling: %d, %s' % (i, name))
def validate_epoch(self, val_db, epoch): if self.cfg.cuda and self.cfg.parallel: net = self.net.module else: net = self.net all_losses, all_accuracies = [], [] # initial experiment, just use one group of sentence for G in range(5): val_db.cfg.sent_group = G # if epoch == 0: # seq_db = sequence_loader(val_db) # else: # seq_db = sequence_loader(val_db, self.val_tables) # seq_db = sequence_loader(val_db, self.val_tables) if self.cfg.use_hard_mining: seq_db = sequence_loader(val_db, self.val_tables) else: seq_db = sequence_loader(val_db) val_loader = DataLoader(seq_db, batch_size=self.cfg.batch_size, shuffle=False, num_workers=self.cfg.num_workers, pin_memory=True) for cnt, batched in enumerate(val_loader): ################################################################## ## Batched data ################################################################## input_inds, input_lens, fg_onehots, bg_imgs, \ fg_imgs, neg_imgs, fg_resnets, neg_resnets,\ gt_inds, gt_msks, patch_inds = \ self.batch_data(batched) ################################################################## ## Validate one step ################################################################## self.net.eval() with torch.no_grad(): inputs = (input_inds, input_lens, bg_imgs, fg_onehots, fg_imgs, neg_imgs, fg_resnets, neg_resnets) inf_outs, _, pos_vecs, neg_vecs = self.net(inputs) if self.cfg.use_hard_mining: pred_loss, embed_loss, attn_loss, pred_accu = self.evaluate( inf_outs, pos_vecs, neg_vecs, gt_inds, gt_msks, val_db, patch_inds) else: pred_loss, embed_loss, attn_loss, pred_accu = self.evaluate( inf_outs, pos_vecs, neg_vecs, gt_inds, gt_msks) loss = pred_loss + embed_loss + attn_loss all_losses.append( np.array([ loss.cpu().data.item(), pred_loss.cpu().data.item(), embed_loss.cpu().data.item(), attn_loss.cpu().data.item() ])) all_accuracies.append(pred_accu.cpu().data.numpy()) print(epoch, G, cnt) all_losses = np.stack(all_losses, 0) all_accuracies = np.stack(all_accuracies, 0) return all_losses, all_accuracies
def train_epoch(self, train_db, epoch): if self.cfg.cuda and self.cfg.parallel: net = self.net.module else: net = self.net train_db.cfg.sent_group = -1 if self.cfg.use_hard_mining: seq_db = sequence_loader(train_db, self.train_tables) else: seq_db = sequence_loader(train_db) # if epoch == 0: # seq_db = sequence_loader(train_db) # else: # seq_db = sequence_loader(train_db, self.train_tables) # seq_db = sequence_loader(train_db, self.train_tables) train_loader = DataLoader(seq_db, batch_size=self.cfg.batch_size, shuffle=True, num_workers=self.cfg.num_workers, pin_memory=True) all_losses, all_accuracies = [], [] for cnt, batched in enumerate(train_loader): ################################################################## ## Batched data ################################################################## input_inds, input_lens, fg_onehots, bg_imgs, \ fg_imgs, neg_imgs, fg_resnets, neg_resnets,\ gt_inds, gt_msks, patch_inds = \ self.batch_data(batched) ################################################################## ## Train one step ################################################################## self.net.train() self.net.zero_grad() inputs = (input_inds, input_lens, bg_imgs, fg_onehots, fg_imgs, neg_imgs, fg_resnets, neg_resnets) inf_outs, _, pos_vecs, neg_vecs = self.net(inputs) if self.cfg.use_hard_mining: pred_loss, embed_loss, attn_loss, pred_accu = self.evaluate( inf_outs, pos_vecs, neg_vecs, gt_inds, gt_msks, train_db, patch_inds) else: pred_loss, embed_loss, attn_loss, pred_accu = self.evaluate( inf_outs, pos_vecs, neg_vecs, gt_inds, gt_msks) loss = pred_loss + embed_loss + attn_loss loss.backward() self.optimizer.step() ################################################################## ## Collect info ################################################################## all_losses.append( np.array([ loss.cpu().data.item(), pred_loss.cpu().data.item(), embed_loss.cpu().data.item(), attn_loss.cpu().data.item() ])) all_accuracies.append(pred_accu.cpu().data.numpy()) ################################################################## ## Print info ################################################################## if cnt % self.cfg.log_per_steps == 0: print('Epoch %03d, iter %07d:' % (epoch, cnt)) tmp_losses = np.stack(all_losses, 0) tmp_accuracies = np.stack(all_accuracies, 0) print('losses: ', np.mean(tmp_losses[:, 0]), np.mean(tmp_losses[:, 1]), np.mean(tmp_losses[:, 2]), np.mean(tmp_losses[:, 3])) print('accuracies: ', np.mean(tmp_accuracies[:, 0]), np.mean(tmp_accuracies[:, 1]), np.mean(tmp_accuracies[:, 2]), np.mean(tmp_accuracies[:, 3])) print('-------------------------') all_losses = np.stack(all_losses, 0) all_accuracies = np.stack(all_accuracies, 0) return all_losses, all_accuracies
def test_coco_dataloader(config): db = coco(config, 'train', '2017') all_tables = AllCategoriesTables(db) all_tables.build_nntables_for_all_categories(True) sequence_db = sequence_loader(db, all_tables) output_dir = osp.join(config.model_dir, 'test_coco_dataloader') maybe_create(output_dir) loader = DataLoader(sequence_db, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers) start = time() for cnt, batched in enumerate(loader): x = batched['background'].float() y = batched['foreground'].float() z = batched['negative'].float() # x = sequence_onehot_volumn_preprocess(x, len(db.classes)) x = sequence_color_volumn_preprocess(x, len(db.classes)) y = sequence_onehot_volumn_preprocess(y, len(db.classes)) z = sequence_onehot_volumn_preprocess(z, len(db.classes)) # cv2.imwrite('mask0.png', y[0,2,:,:,-4].cpu().data.numpy()) # cv2.imwrite('mask1.png', y[1,2,:,:,-4].cpu().data.numpy()) # cv2.imwrite('mask2.png', y[2,2,:,:,-4].cpu().data.numpy()) # cv2.imwrite('mask3.png', y[3,2,:,:,-4].cpu().data.numpy()) # cv2.imwrite('label0.png', y[0,2,:,:,3].cpu().data.numpy()) # cv2.imwrite('label1.png', y[1,2,:,:,3].cpu().data.numpy()) # cv2.imwrite('label2.png', y[2,2,:,:,3].cpu().data.numpy()) # cv2.imwrite('label3.png', y[3,2,:,:,3].cpu().data.numpy()) # cv2.imwrite('color0.png', y[0,2,:,:,-3:].cpu().data.numpy()) # cv2.imwrite('color1.png', y[1,2,:,:,-3:].cpu().data.numpy()) # cv2.imwrite('color2.png', y[2,2,:,:,-3:].cpu().data.numpy()) # cv2.imwrite('color3.png', y[3,2,:,:,-3:].cpu().data.numpy()) # cv2.imwrite('bg0.png', x[0,3,:,:,9:12].cpu().data.numpy()) # cv2.imwrite('bg1.png', x[1,3,:,:,9:12].cpu().data.numpy()) # cv2.imwrite('bg2.png', x[2,3,:,:,9:12].cpu().data.numpy()) # cv2.imwrite('bg3.png', x[3,3,:,:,9:12].cpu().data.numpy()) x = (x - 128.0).permute(0, 1, 4, 2, 3) y = (y - 128.0).permute(0, 1, 4, 2, 3) z = (z - 128.0).permute(0, 1, 4, 2, 3) print('background', x.size()) print('foreground', y.size()) print('negative', z.size()) print('word_inds', batched['word_inds'].size()) print('word_lens', batched['word_lens'].size()) print('fg_inds', batched['fg_inds'].size()) print('patch_inds', batched['patch_inds'].size()) print('out_inds', batched['out_inds'].size()) print('out_msks', batched['out_msks'].size()) print('foreground_resnets', batched['foreground_resnets'].size()) print('negative_resnets', batched['negative_resnets'].size()) print('foreground_resnets', batched['foreground_resnets'][0, 0]) print('negative_resnets', batched['negative_resnets'][0, 0]) print('out_msks', batched['out_msks'][0]) print('patch_inds', batched['patch_inds'][0]) plt.switch_backend('agg') bg_images = x fg_images = y neg_images = z bsize, ssize, n, h, w = bg_images.size() bg_images = bg_images.view(bsize * ssize, n, h, w) bg_images = tensors_to_vols(bg_images) bg_images = bg_images.reshape(bsize, ssize, h, w, n) bsize, ssize, n, h, w = fg_images.size() fg_images = fg_images.view(bsize * ssize, n, h, w) fg_images = tensors_to_vols(fg_images) fg_images = fg_images.reshape(bsize, ssize, h, w, n) bsize, ssize, n, h, w = neg_images.size() neg_images = neg_images.view(bsize * ssize, n, h, w) neg_images = tensors_to_vols(neg_images) neg_images = neg_images.reshape(bsize, ssize, h, w, n) for i in range(bsize): bg_seq = bg_images[i] fg_seq = fg_images[i] neg_seq = neg_images[i] image_idx = batched['image_index'][i] fg_inds = batched['fg_inds'][i] name = '%03d_' % i + str(image_idx).zfill(12) out_path = osp.join(output_dir, name + '.png') color = cv2.imread(batched['image_path'][i], cv2.IMREAD_COLOR) color, _, _ = create_squared_image(color) fig = plt.figure(figsize=(48, 32)) plt.suptitle(batched['sentence'][i], fontsize=30) for j in range(min(len(bg_seq), 15)): bg, _ = heuristic_collage(bg_seq[j], 83) bg_mask = 255 * np.ones((bg.shape[1], bg.shape[0])) row, col = np.where(np.sum(np.absolute(bg), -1) == 0) bg_mask[row, col] = 0 # bg = bg_seq[j][:,:,-3:] # bg_mask = bg_seq[j][:,:,-4] bg_mask = np.repeat(bg_mask[..., None], 3, -1) fg_color = fg_seq[j][:, :, -3:] # fg_mask = fg_seq[j][:,:,fg_inds[j+1]] fg_mask = fg_seq[j][:, :, -4] neg_color = neg_seq[j][:, :, -3:] # neg_mask = neg_seq[j][:,:,fg_inds[j+1]] neg_mask = neg_seq[j][:, :, -4] color_pair = np.concatenate((fg_color, neg_color), 1) mask_pair = np.concatenate((fg_mask, neg_mask), 1) mask_pair = np.repeat(mask_pair[..., None], 3, -1) patch = np.concatenate((color_pair, mask_pair), 0) patch = cv2.resize(patch, (bg.shape[1], bg.shape[0])) partially_completed_img = np.concatenate((bg, bg_mask, patch), 1) partially_completed_img = clamp_array(partially_completed_img, 0, 255).astype(np.uint8) partially_completed_img = partially_completed_img[:, :, ::-1] plt.subplot(4, 4, j + 1) plt.imshow(partially_completed_img) plt.axis('off') plt.subplot(4, 4, 16) plt.imshow(color[:, :, ::-1]) plt.axis('off') fig.savefig(out_path, bbox_inches='tight') plt.close(fig) if cnt == 3: break print("Time", time() - start)
def test_step_by_step(config): db = coco(config, 'train', '2017') output_dir = osp.join(config.model_dir, 'test_step_by_step') maybe_create(output_dir) all_tables = AllCategoriesTables(db) all_tables.build_nntables_for_all_categories(True) seq_db = sequence_loader(db, all_tables) env = simulator(db, config.batch_size, all_tables) env.reset() loader = DataLoader(seq_db, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers) for cnt, batched in enumerate(loader): out_inds = batched['out_inds'].long().numpy() out_vecs = batched['out_vecs'].float().numpy() sequences = [] for i in range(out_inds.shape[1]): frames = env.batch_render_to_pytorch(out_inds[:, i], out_vecs[:, i]) sequences.append(frames) sequences = torch.stack(sequences, dim=1) # sequences = [tensors_to_vols(x) for x in sequences] for i in range(len(sequences)): sequence = sequences[i] image_idx = batched['image_index'][i] name = '%03d_' % i + str(image_idx).zfill(12) out_path = osp.join(output_dir, name + '.png') color = cv2.imread(batched['image_path'][i], cv2.IMREAD_COLOR) color, _, _ = create_squared_image(color) fig = plt.figure(figsize=(32, 32)) plt.suptitle(batched['sentence'][i], fontsize=30) for j in range(min(len(sequence), 14)): plt.subplot(4, 4, j + 1) seq_np = sequence[j].cpu().data.numpy() if config.use_color_volume: partially_completed_img, _ = heuristic_collage(seq_np, 83) else: partially_completed_img = seq_np[:, :, -3:] partially_completed_img = clamp_array(partially_completed_img, 0, 255).astype(np.uint8) partially_completed_img = partially_completed_img[:, :, ::-1] plt.imshow(partially_completed_img) plt.axis('off') plt.subplot(4, 4, 16) plt.imshow(color[:, :, ::-1]) plt.axis('off') fig.savefig(out_path, bbox_inches='tight') plt.close(fig) break
def test_puzzle_model(config): output_dir = osp.join(config.model_dir, 'test_puzzle_model') maybe_create(output_dir) plt.switch_backend('agg') db = coco(config, 'train', '2017') all_tables = AllCategoriesTables(db) all_tables.build_nntables_for_all_categories(True) sequence_db = sequence_loader(db, all_tables) loader = DataLoader(sequence_db, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) net = PuzzleModel(db) net.eval() for cnt, batched in enumerate(loader): word_inds = batched['word_inds'].long() word_lens = batched['word_lens'].long() bg_images = batched['background'].float() fg_images = batched['foreground'].float() neg_images = batched['negative'].float() fg_resnets = batched['foreground_resnets'].float() neg_resnets = batched['negative_resnets'].float() fg_inds = batched['fg_inds'].long() gt_inds = batched['out_inds'].long() gt_msks = batched['out_msks'].float() fg_onehots = indices2onehots(fg_inds, config.output_vocab_size) inf_outs, _, positive_feats, negative_feats = net((word_inds, word_lens, bg_images, fg_onehots, fg_images, neg_images, fg_resnets, neg_resnets)) obj_logits, coord_logits, attri_logits, patch_vectors, enc_msks, what_wei, where_wei = inf_outs print('teacher forcing') print('obj_logits ', obj_logits.size()) print('coord_logits ', coord_logits.size()) print('attri_logits ', attri_logits.size()) print('patch_vectors ', patch_vectors.size()) print('patch_vectors max:', torch.max(patch_vectors)) print('patch_vectors min:', torch.min(patch_vectors)) print('patch_vectors norm:', torch.norm(patch_vectors, dim=-2)[0,0,0]) print('positive_feats ', positive_feats.size()) print('negative_feats ', negative_feats.size()) if config.what_attn: print('what_att_logits ', what_wei.size()) if config.where_attn > 0: print('where_att_logits ', where_wei.size()) print('----------------------') _, pred_vecs = net.collect_logits_and_vectors(inf_outs, gt_inds) print('pred_vecs', pred_vecs.size()) print('*******************') # # inf_outs, env = net.inference(word_inds, word_lens, -1, 0.0, 0, gt_inds, gt_vecs) # inf_outs, env = net.inference(word_inds, word_lens, -1, 2.0, 0, None, None, all_tables) # obj_logits, coord_logits, attri_logits, patch_vectors, enc_msks, what_wei, where_wei = inf_outs # print('scheduled sampling') # print('obj_logits ', obj_logits.size()) # print('coord_logits ', coord_logits.size()) # print('attri_logits ', attri_logits.size()) # print('patch_vectors ', patch_vectors.size()) # if config.what_attn: # print('what_att_logits ', what_wei.size()) # if config.where_attn > 0: # print('where_att_logits ', where_wei.size()) # print('----------------------') # sequences = env.batch_redraw(True) # for i in range(len(sequences)): # sequence = sequences[i] # image_idx = batched['image_index'][i] # name = '%03d_'%i + str(image_idx).zfill(12) # out_path = osp.join(output_dir, name+'.png') # color = cv2.imread(batched['color_path'][i], cv2.IMREAD_COLOR) # color, _, _ = create_squared_image(color) # fig = plt.figure(figsize=(32, 16)) # plt.suptitle(batched['sentence'][i], fontsize=30) # for j in range(min(len(sequence), 14)): # plt.subplot(3, 5, j+1) # partially_completed_img = clamp_array(sequence[j][:,:,-3:], 0, 255).astype(np.uint8) # partially_completed_img = partially_completed_img[:,:,::-1] # plt.imshow(partially_completed_img) # plt.axis('off') # plt.subplot(3, 5, 15) # plt.imshow(color[:,:,::-1]) # plt.axis('off') # fig.savefig(out_path, bbox_inches='tight') # plt.close(fig) break