Beispiel #1
0
iteration = 4
bs = 1
dataset_config_dir = 'datasets/linemod/dataset_config'
output_result_dir = 'experiments/eval_result/linemod'
knn = KNearestNeighbor(1)

estimator = PoseNet(num_points=num_points, num_obj=num_objects)
estimator.cuda()
refiner = PoseRefineNet(num_points=num_points, num_obj=num_objects)
refiner.cuda()
estimator.load_state_dict(torch.load(opt.model))
refiner.load_state_dict(torch.load(opt.refine_model))
estimator.eval()
refiner.eval()

testdataset = PoseDataset_linemod('test', num_points, False, opt.dataset_root,
                                  0.0, True)
testdataloader = torch.utils.data.DataLoader(testdataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=8)

sym_list = testdataset.get_sym_list()
num_points_mesh = testdataset.get_num_points_mesh()
criterion = Loss(num_points_mesh, sym_list)
criterion_refine = Loss_refine(num_points_mesh, sym_list)

diameter = []
meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r')
meta = yaml.load(meta_file)
for obj in objlist:
    diameter.append(meta[obj]['diameter'] / 1000.0 * 0.1)
Beispiel #2
0
def main():
    # g13: parameter setting -------------------
    '''
    posemodel is trained_checkpoints/linemod/pose_model_9_0.01310166542980859.pth
    refine model is trained_checkpoints/linemod/pose_refine_model_493_0.006761023565178073.pth

    '''
    objlist = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
    knn = KNearestNeighbor(1)
    opt.dataset ='linemod'
    opt.dataset_root = './datasets/linemod/Linemod_preprocessed'
    estimator_path = 'trained_checkpoints/linemod/pose_model_9_0.01310166542980859.pth'
    refiner_path = 'trained_checkpoints/linemod/pose_refine_model_493_0.006761023565178073.pth'
    opt.model = estimator_path
    opt.refine_model = refiner_path
    dataset_config_dir = 'datasets/linemod/dataset_config'
    output_result_dir = 'experiments/eval_result/linemod'
    opt.refine_start = True
    bs = 1 #fixed because of the default setting in torch.utils.data.DataLoader
    opt.iteration = 2 #default is 4 in eval_linemod.py
    t1_start = True
    t1_idx = 0
    t1_total_eval_num = 3
    t2_start = False
    t2_target_list = [22, 30, 172, 187, 267, 363, 410, 471, 472, 605, 644, 712, 1046, 1116, 1129, 1135, 1263]
    #t2_target_list = [0, 1]
    axis_range = 0.1   # the length of X, Y, and Z axis in 3D
    vimg_dir = 'verify_img'
    diameter = []
    meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r')
    meta_d = yaml.load(meta_file)
    for obj in objlist:
        diameter.append(meta_d[obj]['diameter'] / 1000.0 * 0.1)
    print(diameter)
    if not os.path.exists(vimg_dir):
        os.makedirs(vimg_dir)
    #-------------------------------------------
    
    if opt.dataset == 'ycb':
        opt.num_objects = 21 #number of object classes in the dataset
        opt.num_points = 1000 #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb' #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb' #folder to save logs
        opt.repeat_epoch = 1 #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return
    
    estimator = PoseNet(num_points = opt.num_points, num_obj = opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_objects)
    refiner.cuda()
  
    estimator.load_state_dict(torch.load(estimator_path))    
    refiner.load_state_dict(torch.load(refiner_path))
    opt.refine_start = True
    
    test_dataset = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
    
    opt.sym_list = test_dataset.get_sym_list()
    opt.num_points_mesh = test_dataset.get_num_points_mesh()

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\n\
        length of the testing set: {0}\nnumber of sample points on mesh: {1}\n\
        symmetry object list: {2}'\
        .format( len(test_dataset), opt.num_points_mesh, opt.sym_list))
   
    
    #load pytorch model
    estimator.eval()    
    refiner.eval()
    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
    fw = open('{0}/t1_eval_result_logs.txt'.format(output_result_dir), 'w')

    #Pose estimation
    for j, data in enumerate(testdataloader, 0):
        # g13: modify this part for evaluation target--------------------
        if t1_start and j == t1_total_eval_num:
            break
        if t2_start and not (j in t2_target_list):
            continue
        #----------------------------------------------------------------
        points, choose, img, target, model_points, idx = data
        if len(points.size()) == 2:
            print('No.{0} NOT Pass! Lost detection!'.format(j))
            fw.write('No.{0} NOT Pass! Lost detection!\n'.format(j))
            continue
        points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
        pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
        _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)

        #if opt.refine_start: #iterative poserefinement
        #    for ite in range(0, opt.iteration):
        #        pred_r, pred_t = refiner(new_points, emb, idx)
        #        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)
        
        pred_r = pred_r / torch.norm(pred_r, dim=2).view(1, opt.num_points, 1)
        pred_c = pred_c.view(bs, opt.num_points)
        how_max, which_max = torch.max(pred_c, 1)
        pred_t = pred_t.view(bs * opt.num_points, 1, 3)
    
        my_r = pred_r[0][which_max[0]].view(-1).cpu().data.numpy()
        my_t = (points.view(bs * opt.num_points, 1, 3) + pred_t)[which_max[0]].view(-1).cpu().data.numpy()
        my_pred = np.append(my_r, my_t)
    
        for ite in range(0, opt.iteration):
            T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(opt.num_points, 1).contiguous().view(1, opt.num_points, 3)
            my_mat = quaternion_matrix(my_r)
            R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3)
            my_mat[0:3, 3] = my_t
            
            new_points = torch.bmm((points - T), R).contiguous()
            pred_r, pred_t = refiner(new_points, emb, idx)
            pred_r = pred_r.view(1, 1, -1)
            pred_r = pred_r / (torch.norm(pred_r, dim=2).view(1, 1, 1))
            my_r_2 = pred_r.view(-1).cpu().data.numpy()
            my_t_2 = pred_t.view(-1).cpu().data.numpy()
            my_mat_2 = quaternion_matrix(my_r_2)
            my_mat_2[0:3, 3] = my_t_2
    
            my_mat_final = np.dot(my_mat, my_mat_2)
            my_r_final = copy.deepcopy(my_mat_final)
            my_r_final[0:3, 3] = 0
            my_r_final = quaternion_from_matrix(my_r_final, True)
            my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]])
    
            my_pred = np.append(my_r_final, my_t_final)
            my_r = my_r_final
            my_t = my_t_final
            # Here 'my_pred' is the final pose estimation result after refinement ('my_r': quaternion, 'my_t': translation)
        
        #g13: checking the dis value
        success_count = [0 for i in range(opt.num_objects)]
        num_count = [0 for i in range(opt.num_objects)]
        model_points = model_points[0].cpu().detach().numpy()
        my_r = quaternion_matrix(my_r)[:3, :3]
        pred = np.dot(model_points, my_r.T) + my_t
        target = target[0].cpu().detach().numpy()
    
        if idx[0].item() in opt.sym_list:
            pred = torch.from_numpy(pred.astype(np.float32)).cuda().transpose(1, 0).contiguous()
            target = torch.from_numpy(target.astype(np.float32)).cuda().transpose(1, 0).contiguous()
            inds = knn(target.unsqueeze(0), pred.unsqueeze(0))
            target = torch.index_select(target, 1, inds.view(-1) - 1)
            dis = torch.mean(torch.norm((pred.transpose(1, 0) - target.transpose(1, 0)), dim=1), dim=0).item()
        else:
            dis = np.mean(np.linalg.norm(pred - target, axis=1))
    
        if dis < diameter[idx[0].item()]:
            success_count[idx[0].item()] += 1
            print('No.{0} Pass! Distance: {1}'.format(j, dis))
            fw.write('No.{0} Pass! Distance: {1}\n'.format(j, dis))
        else:
            print('No.{0} NOT Pass! Distance: {1}'.format(j, dis))
            fw.write('No.{0} NOT Pass! Distance: {1}\n'.format(j, dis))
        num_count[idx[0].item()] += 1
        
        # g13: start drawing pose on image------------------------------------
        # pick up image
        print('{0}:\nmy_r is {1}\nmy_t is {2}\ndis:{3}'.format(j, my_r, my_t, dis.item()))    
        print("index {0}: {1}".format(j, test_dataset.list_rgb[j]))
        img = Image.open(test_dataset.list_rgb[j])
        
        # pick up center position by bbox
        meta_file = open('{0}/data/{1}/gt.yml'.format(opt.dataset_root, '%02d' % test_dataset.list_obj[j]), 'r')
        meta = {}
        meta = yaml.load(meta_file)
        which_item = test_dataset.list_rank[j]
        which_obj = test_dataset.list_obj[j]
        which_dict = 0
        dict_leng = len(meta[which_item])
        #print('get meta[{0}][{1}][obj_bb]'.format(which_item, which_obj))
        k_idx = 0
        while 1:
            if meta[which_item][k_idx]['obj_id'] == which_obj:
                which_dict = k_idx
                break
            k_idx = k_idx+1
        
        bbx = meta[which_item][which_dict]['obj_bb']
        draw = ImageDraw.Draw(img) 
        
        # draw box (ensure this is the right object)
        draw.line((bbx[0],bbx[1], bbx[0], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1], bbx[0]+bbx[2], bbx[1]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1]+bbx[3], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0]+bbx[2],bbx[1], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        
        #get center
        c_x = bbx[0]+int(bbx[2]/2)
        c_y = bbx[1]+int(bbx[3]/2)
        draw.point((c_x,c_y), fill=(255,255,0))
        print('center:({0},{1})'.format(c_x, c_y))
        
        #get the 3D position of center
        cam_intrinsic = np.zeros((3,3))
        cam_intrinsic.itemset(0, test_dataset.cam_fx)
        cam_intrinsic.itemset(4, test_dataset.cam_fy)
        cam_intrinsic.itemset(2, test_dataset.cam_cx)
        cam_intrinsic.itemset(5, test_dataset.cam_cy)
        cam_intrinsic.itemset(8, 1)
        cam_extrinsic = my_mat_final[0:3, :]
        cam2d_3d = np.matmul(cam_intrinsic, cam_extrinsic)
        cen_3d = np.matmul(np.linalg.pinv(cam2d_3d), [[c_x],[c_y],[1]])
        # replace img.show() with plt.imshow(img)
        
        #transpose three 3D axis point into 2D
        x_3d = cen_3d + [[axis_range],[0],[0],[0]]
        y_3d = cen_3d + [[0],[axis_range],[0],[0]]
        z_3d = cen_3d + [[0],[0],[axis_range],[0]]
        x_2d = np.matmul(cam2d_3d, x_3d)
        y_2d = np.matmul(cam2d_3d, y_3d)
        z_2d = np.matmul(cam2d_3d, z_3d)
        
        #draw the axis on 2D
        draw.line((c_x, c_y, x_2d[0], x_2d[1]), fill=(255,255,0), width=5)
        draw.line((c_x, c_y, y_2d[0], y_2d[1]), fill=(0,255,0), width=5)
        draw.line((c_x, c_y, z_2d[0], z_2d[1]), fill=(0,0,255), width=5)
        
        #g13: draw the estimate pred obj
        for pti in pred:
            pti.transpose()
            pti_2d = np.matmul(cam_intrinsic, pti)
            #print('({0},{1})\n'.format(int(pti_2d[0]),int(pti_2d[1])))
            draw.point([int(pti_2d[0]),int(pti_2d[1])], fill=(255,255,0))
            
        
        #g13: show image
        #img.show()
        
        #save file under file 
        img_file_name = '{0}/batch{1}_pred_obj{2}_pic{3}.png'.format(vimg_dir, j, test_dataset.list_obj[j], which_item)
        img.save( img_file_name, "PNG" )
        img.close()
        
        # plot ground true ----------------------------
        img = Image.open(test_dataset.list_rgb[j])
        draw = ImageDraw.Draw(img) 
        draw.line((bbx[0],bbx[1], bbx[0], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1], bbx[0]+bbx[2], bbx[1]), fill=(255,0,0), width=5)
        draw.line((bbx[0],bbx[1]+bbx[3], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)
        draw.line((bbx[0]+bbx[2],bbx[1], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5)        
        target_r = np.resize(np.array(meta[which_item][k_idx]['cam_R_m2c']), (3, 3))                
        target_t = np.array(meta[which_item][k_idx]['cam_t_m2c'])
        target_t = target_t[np.newaxis, :]               
        cam_extrinsic_GT = np.concatenate((target_r, target_t.T), axis=1)
        
        
        #get center 3D
        cam2d_3d_GT = np.matmul(cam_intrinsic, cam_extrinsic_GT)
        cen_3d_GT = np.matmul(np.linalg.pinv(cam2d_3d_GT), [[c_x],[c_y],[1]])
        
        #transpose three 3D axis point into 2D
        x_3d = cen_3d_GT + [[axis_range],[0],[0],[0]]
        y_3d = cen_3d_GT + [[0],[axis_range],[0],[0]]
        z_3d = cen_3d_GT + [[0],[0],[axis_range],[0]]
        
        x_2d = np.matmul(cam2d_3d_GT, x_3d)
        y_2d = np.matmul(cam2d_3d_GT, y_3d)
        z_2d = np.matmul(cam2d_3d_GT, z_3d)

        #draw the axis on 2D
        draw.line((c_x, c_y, x_2d[0], x_2d[1]), fill=(255,255,0), width=5)
        draw.line((c_x, c_y, y_2d[0], y_2d[1]), fill=(0,255,0), width=5)
        draw.line((c_x, c_y, z_2d[0], z_2d[1]), fill=(0,0,255), width=5)
      
       
        print('pred:\n{0}\nGT:\n{1}\n'.format(cam_extrinsic,cam_extrinsic_GT))
        print('pred 3D:{0}\nGT 3D:{1}\n'.format(cen_3d, cen_3d_GT))
        img_file_name = '{0}/batch{1}_pred_obj{2}_pic{3}_gt.png'.format(vimg_dir, j, test_dataset.list_obj[j], which_item)
        img.save( img_file_name, "PNG" )
        img.close()
        meta_file.close()
    print('\nplot_result_img.py completed the task\n')
Beispiel #3
0
output_result_dir = 'experiments/eval_result/linemod'
result_wo_refine_dir = 'experiments/eval_result/linemod/Densefusion_wo_refine_result'
result_refine_dir = 'experiments/eval_result/linemod/Densefusion_iterative_result'

knn = KNearestNeighbor(1)

estimator = PoseNet(num_points=num_points, num_obj=num_objects)
estimator.cuda()
refiner = PoseRefineNet(num_points=num_points, num_obj=num_objects)
refiner.cuda()
estimator.load_state_dict(torch.load(opt.model))
refiner.load_state_dict(torch.load(opt.refine_model))
estimator.eval()
refiner.eval()

testdataset = PoseDataset_linemod('eval', num_points, False, opt.dataset_root,
                                  0.0, True)
testdataloader = torch.utils.data.DataLoader(testdataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=10)

sym_list = testdataset.get_sym_list()  # symmetry_obj_idx
num_points_mesh = testdataset.get_num_points_mesh()
criterion = Loss(num_points_mesh, sym_list)
criterion_refine = Loss_refine(num_points_mesh, sym_list)

diameter = []
meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r')
meta = yaml.load(meta_file)
for obj in objlist:
    diameter.append(meta[obj]['diameter'] / 1000.0 * 0.1)
Beispiel #4
0
bs = 1
dataset_config_dir = 'datasets/linemod/dataset_config'
output_result_dir = 'results/eval_linemod'
if not os.path.exists(output_result_dir):
    os.makedirs(output_result_dir)
knn = KNearestNeighbor(1)

os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
estimator = PoseNet(num_points=num_points,
                    num_obj=num_objects,
                    num_rot=num_rotations)
estimator.cuda()
estimator.load_state_dict(torch.load(opt.model))
estimator.eval()

test_dataset = PoseDataset('eval', num_points, False, opt.dataset_root, 0.0)
test_dataloader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=1,
                                              shuffle=False,
                                              num_workers=10)
sym_list = test_dataset.get_sym_list()
rot_anchors = torch.from_numpy(estimator.rot_anchors).float().cuda()
diameter = test_dataset.get_diameter()

success_count = [0 for i in range(num_objects)]
num_count = [0 for i in range(num_objects)]
fw = open('{0}/eval_result_logs.txt'.format(output_result_dir), 'w')

error_data = 0
for i, data in enumerate(test_dataloader, 0):
    try: