iteration = 4 bs = 1 dataset_config_dir = 'datasets/linemod/dataset_config' output_result_dir = 'experiments/eval_result/linemod' knn = KNearestNeighbor(1) estimator = PoseNet(num_points=num_points, num_obj=num_objects) estimator.cuda() refiner = PoseRefineNet(num_points=num_points, num_obj=num_objects) refiner.cuda() estimator.load_state_dict(torch.load(opt.model)) refiner.load_state_dict(torch.load(opt.refine_model)) estimator.eval() refiner.eval() testdataset = PoseDataset_linemod('test', num_points, False, opt.dataset_root, 0.0, True) testdataloader = torch.utils.data.DataLoader(testdataset, batch_size=1, shuffle=False, num_workers=8) sym_list = testdataset.get_sym_list() num_points_mesh = testdataset.get_num_points_mesh() criterion = Loss(num_points_mesh, sym_list) criterion_refine = Loss_refine(num_points_mesh, sym_list) diameter = [] meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r') meta = yaml.load(meta_file) for obj in objlist: diameter.append(meta[obj]['diameter'] / 1000.0 * 0.1)
def main(): # g13: parameter setting ------------------- ''' posemodel is trained_checkpoints/linemod/pose_model_9_0.01310166542980859.pth refine model is trained_checkpoints/linemod/pose_refine_model_493_0.006761023565178073.pth ''' objlist = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15] knn = KNearestNeighbor(1) opt.dataset ='linemod' opt.dataset_root = './datasets/linemod/Linemod_preprocessed' estimator_path = 'trained_checkpoints/linemod/pose_model_9_0.01310166542980859.pth' refiner_path = 'trained_checkpoints/linemod/pose_refine_model_493_0.006761023565178073.pth' opt.model = estimator_path opt.refine_model = refiner_path dataset_config_dir = 'datasets/linemod/dataset_config' output_result_dir = 'experiments/eval_result/linemod' opt.refine_start = True bs = 1 #fixed because of the default setting in torch.utils.data.DataLoader opt.iteration = 2 #default is 4 in eval_linemod.py t1_start = True t1_idx = 0 t1_total_eval_num = 3 t2_start = False t2_target_list = [22, 30, 172, 187, 267, 363, 410, 471, 472, 605, 644, 712, 1046, 1116, 1129, 1135, 1263] #t2_target_list = [0, 1] axis_range = 0.1 # the length of X, Y, and Z axis in 3D vimg_dir = 'verify_img' diameter = [] meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r') meta_d = yaml.load(meta_file) for obj in objlist: diameter.append(meta_d[obj]['diameter'] / 1000.0 * 0.1) print(diameter) if not os.path.exists(vimg_dir): os.makedirs(vimg_dir) #------------------------------------------- if opt.dataset == 'ycb': opt.num_objects = 21 #number of object classes in the dataset opt.num_points = 1000 #number of points on the input pointcloud opt.outf = 'trained_models/ycb' #folder to save trained models opt.log_dir = 'experiments/logs/ycb' #folder to save logs opt.repeat_epoch = 1 #number of repeat times for one epoch training elif opt.dataset == 'linemod': opt.num_objects = 13 opt.num_points = 500 opt.outf = 'trained_models/linemod' opt.log_dir = 'experiments/logs/linemod' opt.repeat_epoch = 20 else: print('Unknown dataset') return estimator = PoseNet(num_points = opt.num_points, num_obj = opt.num_objects) estimator.cuda() refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_objects) refiner.cuda() estimator.load_state_dict(torch.load(estimator_path)) refiner.load_state_dict(torch.load(refiner_path)) opt.refine_start = True test_dataset = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start) testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers) opt.sym_list = test_dataset.get_sym_list() opt.num_points_mesh = test_dataset.get_num_points_mesh() print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\n\ length of the testing set: {0}\nnumber of sample points on mesh: {1}\n\ symmetry object list: {2}'\ .format( len(test_dataset), opt.num_points_mesh, opt.sym_list)) #load pytorch model estimator.eval() refiner.eval() criterion = Loss(opt.num_points_mesh, opt.sym_list) criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list) fw = open('{0}/t1_eval_result_logs.txt'.format(output_result_dir), 'w') #Pose estimation for j, data in enumerate(testdataloader, 0): # g13: modify this part for evaluation target-------------------- if t1_start and j == t1_total_eval_num: break if t2_start and not (j in t2_target_list): continue #---------------------------------------------------------------- points, choose, img, target, model_points, idx = data if len(points.size()) == 2: print('No.{0} NOT Pass! Lost detection!'.format(j)) fw.write('No.{0} NOT Pass! Lost detection!\n'.format(j)) continue points, choose, img, target, model_points, idx = Variable(points).cuda(), \ Variable(choose).cuda(), \ Variable(img).cuda(), \ Variable(target).cuda(), \ Variable(model_points).cuda(), \ Variable(idx).cuda() pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx) _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start) #if opt.refine_start: #iterative poserefinement # for ite in range(0, opt.iteration): # pred_r, pred_t = refiner(new_points, emb, idx) # dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points) pred_r = pred_r / torch.norm(pred_r, dim=2).view(1, opt.num_points, 1) pred_c = pred_c.view(bs, opt.num_points) how_max, which_max = torch.max(pred_c, 1) pred_t = pred_t.view(bs * opt.num_points, 1, 3) my_r = pred_r[0][which_max[0]].view(-1).cpu().data.numpy() my_t = (points.view(bs * opt.num_points, 1, 3) + pred_t)[which_max[0]].view(-1).cpu().data.numpy() my_pred = np.append(my_r, my_t) for ite in range(0, opt.iteration): T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(opt.num_points, 1).contiguous().view(1, opt.num_points, 3) my_mat = quaternion_matrix(my_r) R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3) my_mat[0:3, 3] = my_t new_points = torch.bmm((points - T), R).contiguous() pred_r, pred_t = refiner(new_points, emb, idx) pred_r = pred_r.view(1, 1, -1) pred_r = pred_r / (torch.norm(pred_r, dim=2).view(1, 1, 1)) my_r_2 = pred_r.view(-1).cpu().data.numpy() my_t_2 = pred_t.view(-1).cpu().data.numpy() my_mat_2 = quaternion_matrix(my_r_2) my_mat_2[0:3, 3] = my_t_2 my_mat_final = np.dot(my_mat, my_mat_2) my_r_final = copy.deepcopy(my_mat_final) my_r_final[0:3, 3] = 0 my_r_final = quaternion_from_matrix(my_r_final, True) my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]]) my_pred = np.append(my_r_final, my_t_final) my_r = my_r_final my_t = my_t_final # Here 'my_pred' is the final pose estimation result after refinement ('my_r': quaternion, 'my_t': translation) #g13: checking the dis value success_count = [0 for i in range(opt.num_objects)] num_count = [0 for i in range(opt.num_objects)] model_points = model_points[0].cpu().detach().numpy() my_r = quaternion_matrix(my_r)[:3, :3] pred = np.dot(model_points, my_r.T) + my_t target = target[0].cpu().detach().numpy() if idx[0].item() in opt.sym_list: pred = torch.from_numpy(pred.astype(np.float32)).cuda().transpose(1, 0).contiguous() target = torch.from_numpy(target.astype(np.float32)).cuda().transpose(1, 0).contiguous() inds = knn(target.unsqueeze(0), pred.unsqueeze(0)) target = torch.index_select(target, 1, inds.view(-1) - 1) dis = torch.mean(torch.norm((pred.transpose(1, 0) - target.transpose(1, 0)), dim=1), dim=0).item() else: dis = np.mean(np.linalg.norm(pred - target, axis=1)) if dis < diameter[idx[0].item()]: success_count[idx[0].item()] += 1 print('No.{0} Pass! Distance: {1}'.format(j, dis)) fw.write('No.{0} Pass! Distance: {1}\n'.format(j, dis)) else: print('No.{0} NOT Pass! Distance: {1}'.format(j, dis)) fw.write('No.{0} NOT Pass! Distance: {1}\n'.format(j, dis)) num_count[idx[0].item()] += 1 # g13: start drawing pose on image------------------------------------ # pick up image print('{0}:\nmy_r is {1}\nmy_t is {2}\ndis:{3}'.format(j, my_r, my_t, dis.item())) print("index {0}: {1}".format(j, test_dataset.list_rgb[j])) img = Image.open(test_dataset.list_rgb[j]) # pick up center position by bbox meta_file = open('{0}/data/{1}/gt.yml'.format(opt.dataset_root, '%02d' % test_dataset.list_obj[j]), 'r') meta = {} meta = yaml.load(meta_file) which_item = test_dataset.list_rank[j] which_obj = test_dataset.list_obj[j] which_dict = 0 dict_leng = len(meta[which_item]) #print('get meta[{0}][{1}][obj_bb]'.format(which_item, which_obj)) k_idx = 0 while 1: if meta[which_item][k_idx]['obj_id'] == which_obj: which_dict = k_idx break k_idx = k_idx+1 bbx = meta[which_item][which_dict]['obj_bb'] draw = ImageDraw.Draw(img) # draw box (ensure this is the right object) draw.line((bbx[0],bbx[1], bbx[0], bbx[1]+bbx[3]), fill=(255,0,0), width=5) draw.line((bbx[0],bbx[1], bbx[0]+bbx[2], bbx[1]), fill=(255,0,0), width=5) draw.line((bbx[0],bbx[1]+bbx[3], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5) draw.line((bbx[0]+bbx[2],bbx[1], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5) #get center c_x = bbx[0]+int(bbx[2]/2) c_y = bbx[1]+int(bbx[3]/2) draw.point((c_x,c_y), fill=(255,255,0)) print('center:({0},{1})'.format(c_x, c_y)) #get the 3D position of center cam_intrinsic = np.zeros((3,3)) cam_intrinsic.itemset(0, test_dataset.cam_fx) cam_intrinsic.itemset(4, test_dataset.cam_fy) cam_intrinsic.itemset(2, test_dataset.cam_cx) cam_intrinsic.itemset(5, test_dataset.cam_cy) cam_intrinsic.itemset(8, 1) cam_extrinsic = my_mat_final[0:3, :] cam2d_3d = np.matmul(cam_intrinsic, cam_extrinsic) cen_3d = np.matmul(np.linalg.pinv(cam2d_3d), [[c_x],[c_y],[1]]) # replace img.show() with plt.imshow(img) #transpose three 3D axis point into 2D x_3d = cen_3d + [[axis_range],[0],[0],[0]] y_3d = cen_3d + [[0],[axis_range],[0],[0]] z_3d = cen_3d + [[0],[0],[axis_range],[0]] x_2d = np.matmul(cam2d_3d, x_3d) y_2d = np.matmul(cam2d_3d, y_3d) z_2d = np.matmul(cam2d_3d, z_3d) #draw the axis on 2D draw.line((c_x, c_y, x_2d[0], x_2d[1]), fill=(255,255,0), width=5) draw.line((c_x, c_y, y_2d[0], y_2d[1]), fill=(0,255,0), width=5) draw.line((c_x, c_y, z_2d[0], z_2d[1]), fill=(0,0,255), width=5) #g13: draw the estimate pred obj for pti in pred: pti.transpose() pti_2d = np.matmul(cam_intrinsic, pti) #print('({0},{1})\n'.format(int(pti_2d[0]),int(pti_2d[1]))) draw.point([int(pti_2d[0]),int(pti_2d[1])], fill=(255,255,0)) #g13: show image #img.show() #save file under file img_file_name = '{0}/batch{1}_pred_obj{2}_pic{3}.png'.format(vimg_dir, j, test_dataset.list_obj[j], which_item) img.save( img_file_name, "PNG" ) img.close() # plot ground true ---------------------------- img = Image.open(test_dataset.list_rgb[j]) draw = ImageDraw.Draw(img) draw.line((bbx[0],bbx[1], bbx[0], bbx[1]+bbx[3]), fill=(255,0,0), width=5) draw.line((bbx[0],bbx[1], bbx[0]+bbx[2], bbx[1]), fill=(255,0,0), width=5) draw.line((bbx[0],bbx[1]+bbx[3], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5) draw.line((bbx[0]+bbx[2],bbx[1], bbx[0]+bbx[2], bbx[1]+bbx[3]), fill=(255,0,0), width=5) target_r = np.resize(np.array(meta[which_item][k_idx]['cam_R_m2c']), (3, 3)) target_t = np.array(meta[which_item][k_idx]['cam_t_m2c']) target_t = target_t[np.newaxis, :] cam_extrinsic_GT = np.concatenate((target_r, target_t.T), axis=1) #get center 3D cam2d_3d_GT = np.matmul(cam_intrinsic, cam_extrinsic_GT) cen_3d_GT = np.matmul(np.linalg.pinv(cam2d_3d_GT), [[c_x],[c_y],[1]]) #transpose three 3D axis point into 2D x_3d = cen_3d_GT + [[axis_range],[0],[0],[0]] y_3d = cen_3d_GT + [[0],[axis_range],[0],[0]] z_3d = cen_3d_GT + [[0],[0],[axis_range],[0]] x_2d = np.matmul(cam2d_3d_GT, x_3d) y_2d = np.matmul(cam2d_3d_GT, y_3d) z_2d = np.matmul(cam2d_3d_GT, z_3d) #draw the axis on 2D draw.line((c_x, c_y, x_2d[0], x_2d[1]), fill=(255,255,0), width=5) draw.line((c_x, c_y, y_2d[0], y_2d[1]), fill=(0,255,0), width=5) draw.line((c_x, c_y, z_2d[0], z_2d[1]), fill=(0,0,255), width=5) print('pred:\n{0}\nGT:\n{1}\n'.format(cam_extrinsic,cam_extrinsic_GT)) print('pred 3D:{0}\nGT 3D:{1}\n'.format(cen_3d, cen_3d_GT)) img_file_name = '{0}/batch{1}_pred_obj{2}_pic{3}_gt.png'.format(vimg_dir, j, test_dataset.list_obj[j], which_item) img.save( img_file_name, "PNG" ) img.close() meta_file.close() print('\nplot_result_img.py completed the task\n')
output_result_dir = 'experiments/eval_result/linemod' result_wo_refine_dir = 'experiments/eval_result/linemod/Densefusion_wo_refine_result' result_refine_dir = 'experiments/eval_result/linemod/Densefusion_iterative_result' knn = KNearestNeighbor(1) estimator = PoseNet(num_points=num_points, num_obj=num_objects) estimator.cuda() refiner = PoseRefineNet(num_points=num_points, num_obj=num_objects) refiner.cuda() estimator.load_state_dict(torch.load(opt.model)) refiner.load_state_dict(torch.load(opt.refine_model)) estimator.eval() refiner.eval() testdataset = PoseDataset_linemod('eval', num_points, False, opt.dataset_root, 0.0, True) testdataloader = torch.utils.data.DataLoader(testdataset, batch_size=1, shuffle=False, num_workers=10) sym_list = testdataset.get_sym_list() # symmetry_obj_idx num_points_mesh = testdataset.get_num_points_mesh() criterion = Loss(num_points_mesh, sym_list) criterion_refine = Loss_refine(num_points_mesh, sym_list) diameter = [] meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r') meta = yaml.load(meta_file) for obj in objlist: diameter.append(meta[obj]['diameter'] / 1000.0 * 0.1)
bs = 1 dataset_config_dir = 'datasets/linemod/dataset_config' output_result_dir = 'results/eval_linemod' if not os.path.exists(output_result_dir): os.makedirs(output_result_dir) knn = KNearestNeighbor(1) os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id estimator = PoseNet(num_points=num_points, num_obj=num_objects, num_rot=num_rotations) estimator.cuda() estimator.load_state_dict(torch.load(opt.model)) estimator.eval() test_dataset = PoseDataset('eval', num_points, False, opt.dataset_root, 0.0) test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=10) sym_list = test_dataset.get_sym_list() rot_anchors = torch.from_numpy(estimator.rot_anchors).float().cuda() diameter = test_dataset.get_diameter() success_count = [0 for i in range(num_objects)] num_count = [0 for i in range(num_objects)] fw = open('{0}/eval_result_logs.txt'.format(output_result_dir), 'w') error_data = 0 for i, data in enumerate(test_dataloader, 0): try: