Beispiel #1
0
def update_argparser(parser):
  datasets.update_argparser(parser)
  parser.add_argument(
      '--noise-sigma',
      help='Scale for image super-resolution',
      default=25,
      type=float)
  parser.add_argument(
      '--train-patch-size',
      help='Number of pixels in height or width of patches',
      default=43,
      type=int)
  parser.add_argument(
      '--eval-patch-size',
      help='Number of pixels in height or width of patches',
      default=43,
      type=int)
  parser.add_argument(
      '--train-flist',
      help='GCS location to write checkpoints and export models',
      type=str,
      required=True)
  parser.add_argument(
      '--eval-flist',
      help='GCS location to write checkpoints and export models',
      type=str,
      required=True)
  parser.set_defaults(
      num_channels=NUM_CHANNELS,
      train_batch_size=16,
      eval_batch_size=1,
      shuffle_buffer_size=800,
  )
Beispiel #2
0
def update_argparser(parser):
    datasets.update_argparser(parser)
    parser.add_argument('--scale',
                        help='Scale factor for image super-resolution.',
                        default=2,
                        type=int)
    parser.add_argument(
        '--lr_patch_size',
        help='Number of pixels in height or width of LR patches.',
        default=48,
        type=int)
    parser.add_argument(
        '--ignored_boundary_size',
        help='Number of ignored boundary pixels of LR patches.',
        default=2,
        type=int)
    parser.add_argument(
        '--num_patches',
        help='Number of sampling patches per image for training.',
        default=100,
        type=int)
    parser.set_defaults(
        train_batch_size=16,
        eval_batch_size=1,
        image_mean=0.5,
    )
Beispiel #3
0
def update_argparser(parser):
    datasets.update_argparser(parser)
    parser.set_defaults(
        num_classes=NUM_CLASSES,
        train_batch_size=128,
        eval_batch_size=512,
        shuffle_buffer_size=50000,
    )
Beispiel #4
0
def update_argparser(parser):
    datasets.update_argparser(parser)
    parser.add_argument('--scale',
                        help='Scale for image super-resolution',
                        default=2,
                        type=int)
    parser.add_argument(
        '--lr-patch-size',
        help='Number of pixels in height or width of LR patches',
        default=48,
        type=int)
    parser.set_defaults(
        num_channels=NUM_CHANNELS,
        train_batch_size=16,
        eval_batch_size=1,
        shuffle_buffer_size=800,
    )