def update_argparser(parser): datasets.update_argparser(parser) parser.add_argument( '--noise-sigma', help='Scale for image super-resolution', default=25, type=float) parser.add_argument( '--train-patch-size', help='Number of pixels in height or width of patches', default=43, type=int) parser.add_argument( '--eval-patch-size', help='Number of pixels in height or width of patches', default=43, type=int) parser.add_argument( '--train-flist', help='GCS location to write checkpoints and export models', type=str, required=True) parser.add_argument( '--eval-flist', help='GCS location to write checkpoints and export models', type=str, required=True) parser.set_defaults( num_channels=NUM_CHANNELS, train_batch_size=16, eval_batch_size=1, shuffle_buffer_size=800, )
def update_argparser(parser): datasets.update_argparser(parser) parser.add_argument('--scale', help='Scale factor for image super-resolution.', default=2, type=int) parser.add_argument( '--lr_patch_size', help='Number of pixels in height or width of LR patches.', default=48, type=int) parser.add_argument( '--ignored_boundary_size', help='Number of ignored boundary pixels of LR patches.', default=2, type=int) parser.add_argument( '--num_patches', help='Number of sampling patches per image for training.', default=100, type=int) parser.set_defaults( train_batch_size=16, eval_batch_size=1, image_mean=0.5, )
def update_argparser(parser): datasets.update_argparser(parser) parser.set_defaults( num_classes=NUM_CLASSES, train_batch_size=128, eval_batch_size=512, shuffle_buffer_size=50000, )
def update_argparser(parser): datasets.update_argparser(parser) parser.add_argument('--scale', help='Scale for image super-resolution', default=2, type=int) parser.add_argument( '--lr-patch-size', help='Number of pixels in height or width of LR patches', default=48, type=int) parser.set_defaults( num_channels=NUM_CHANNELS, train_batch_size=16, eval_batch_size=1, shuffle_buffer_size=800, )