def test1():

  dials_regression = libtbx.env.find_in_repositories(
    relative_path="dials_regression",
    test=os.path.isdir)

  # use a datablock that contains a CS-PAD detector description
  data_dir = os.path.join(dials_regression, "refinement_test_data",
                          "hierarchy_test")
  datablock_path = os.path.join(data_dir, "datablock.json")
  assert os.path.exists(datablock_path)

  # load models
  from dxtbx.datablock import DataBlockFactory
  datablock = DataBlockFactory.from_serialized_format(datablock_path, check_format=False)
  im_set = datablock[0].extract_imagesets()[0]
  from copy import deepcopy
  detector = deepcopy(im_set.get_detector())
  beam = im_set.get_beam()

  # we'll invent a crystal, goniometer and scan for this test
  from dxtbx.model.crystal import crystal_model
  crystal = crystal_model((40.,0.,0.) ,(0.,40.,0.), (0.,0.,40.),
                          space_group_symbol = "P1")

  from dxtbx.model.experiment import goniometer_factory
  goniometer = goniometer_factory.known_axis((1., 0., 0.))

  # Build a mock scan for a 180 degree sweep
  from dxtbx.model.scan import scan_factory
  sf = scan_factory()
  scan = sf.make_scan(image_range = (1,1800),
                      exposure_times = 0.1,
                      oscillation = (0, 0.1),
                      epochs = range(1800),
                      deg = True)
  sweep_range = scan.get_oscillation_range(deg=False)
  im_width = scan.get_oscillation(deg=False)[1]
  assert sweep_range == (0., pi)
  assert approx_equal(im_width, 0.1 * pi / 180.)

  from dxtbx.model.experiment.experiment_list import ExperimentList, Experiment

  # Build an experiment list
  experiments = ExperimentList()
  experiments.append(Experiment(
        beam=beam, detector=detector, goniometer=goniometer,
        scan=scan, crystal=crystal, imageset=None))

  # simulate some reflections
  refs, ref_predictor = generate_reflections(experiments)

  # move the detector quadrants apart by 2mm both horizontally and vertically
  from dials.algorithms.refinement.parameterisation \
    import DetectorParameterisationHierarchical
  det_param = DetectorParameterisationHierarchical(detector, level=1)
  det_p_vals = det_param.get_param_vals()
  p_vals = list(det_p_vals)
  p_vals[1] += 2
  p_vals[2] -= 2
  p_vals[7] += 2
  p_vals[8] += 2
  p_vals[13] -= 2
  p_vals[14] += 2
  p_vals[19] -= 2
  p_vals[20] -= 2
  det_param.set_param_vals(p_vals)

  # reparameterise the detector at the new perturbed geometry
  det_param = DetectorParameterisationHierarchical(detector, level=1)

  # parameterise other models
  from dials.algorithms.refinement.parameterisation.beam_parameters import \
      BeamParameterisation
  from dials.algorithms.refinement.parameterisation.crystal_parameters import \
      CrystalOrientationParameterisation, CrystalUnitCellParameterisation
  beam_param = BeamParameterisation(beam, goniometer)
  xlo_param = CrystalOrientationParameterisation(crystal)
  xluc_param = CrystalUnitCellParameterisation(crystal)

  # fix beam
  beam_param.set_fixed([True]*3)

  # fix crystal
  xluc_param.set_fixed([True]*6)
  xlo_param.set_fixed([True]*3)

  # parameterisation of the prediction equation
  from dials.algorithms.refinement.parameterisation.prediction_parameters import \
      XYPhiPredictionParameterisation
  from dials.algorithms.refinement.parameterisation.parameter_report import \
      ParameterReporter
  pred_param = XYPhiPredictionParameterisation(experiments,
    [det_param], [beam_param], [xlo_param], [xluc_param])
  param_reporter = ParameterReporter([det_param], [beam_param],
                                     [xlo_param], [xluc_param])

  # reflection manager and target function
  from dials.algorithms.refinement.target import \
    LeastSquaresPositionalResidualWithRmsdCutoff
  from dials.algorithms.refinement.reflection_manager import ReflectionManager
  refman = ReflectionManager(refs, experiments, nref_per_degree=20)

  # set a very tight rmsd target of 1/10000 of a pixel
  target = LeastSquaresPositionalResidualWithRmsdCutoff(experiments,
      ref_predictor, refman, pred_param, restraints_parameterisation=None,
      frac_binsize_cutoff=0.0001)

  # minimisation engine
  from dials.algorithms.refinement.engine \
    import LevenbergMarquardtIterations as Refinery
  refinery = Refinery(target = target,
                      prediction_parameterisation = pred_param,
                      log = None,
                      verbosity = 0,
                      track_step = False,
                      track_gradient = False,
                      track_parameter_correlation = False,
                      max_iterations = 20)

  # Refiner
  from dials.algorithms.refinement.refiner import Refiner
  refiner = Refiner(reflections=refs,
                    experiments=experiments,
                    pred_param=pred_param,
                    param_reporter=param_reporter,
                    refman=refman,
                    target=target,
                    refinery=refinery,
                    verbosity=0)

  history = refiner.run()
  assert history.reason_for_termination == "RMSD target achieved"

  #compare detector with original detector
  orig_det = im_set.get_detector()
  refined_det = refiner.get_experiments()[0].detector

  from scitbx import matrix
  import math
  for op, rp in zip(orig_det, refined_det):
    # compare the origin vectors by...
    o1 = matrix.col(op.get_origin())
    o2 = matrix.col(rp.get_origin())
    # ...their relative lengths
    assert approx_equal(
      math.fabs(o1.length() - o2.length()) / o1.length(), 0, eps=1e-5)
    # ...the angle between them
    assert approx_equal(o1.accute_angle(o2), 0, eps=1e-5)

  print "OK"
  return
def test1():

    dials_regression = libtbx.env.find_in_repositories(
        relative_path="dials_regression", test=os.path.isdir)

    # use a datablock that contains a CS-PAD detector description
    data_dir = os.path.join(dials_regression, "refinement_test_data",
                            "hierarchy_test")
    datablock_path = os.path.join(data_dir, "datablock.json")
    assert os.path.exists(datablock_path)

    # load models
    from dxtbx.datablock import DataBlockFactory
    datablock = DataBlockFactory.from_serialized_format(datablock_path,
                                                        check_format=False)
    im_set = datablock[0].extract_imagesets()[0]
    from copy import deepcopy
    detector = deepcopy(im_set.get_detector())
    beam = im_set.get_beam()

    # we'll invent a crystal, goniometer and scan for this test
    from dxtbx.model import Crystal
    crystal = Crystal((40., 0., 0.), (0., 40., 0.), (0., 0., 40.),
                      space_group_symbol="P1")

    from dxtbx.model import GoniometerFactory
    goniometer = GoniometerFactory.known_axis((1., 0., 0.))

    # Build a mock scan for a 180 degree sweep
    from dxtbx.model import ScanFactory
    sf = ScanFactory()
    scan = sf.make_scan(image_range=(1, 1800),
                        exposure_times=0.1,
                        oscillation=(0, 0.1),
                        epochs=range(1800),
                        deg=True)
    sweep_range = scan.get_oscillation_range(deg=False)
    im_width = scan.get_oscillation(deg=False)[1]
    assert sweep_range == (0., pi)
    assert approx_equal(im_width, 0.1 * pi / 180.)

    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(beam=beam,
                   detector=detector,
                   goniometer=goniometer,
                   scan=scan,
                   crystal=crystal,
                   imageset=None))

    # simulate some reflections
    refs, ref_predictor = generate_reflections(experiments)

    # move the detector quadrants apart by 2mm both horizontally and vertically
    from dials.algorithms.refinement.parameterisation \
      import DetectorParameterisationHierarchical
    det_param = DetectorParameterisationHierarchical(detector, level=1)
    det_p_vals = det_param.get_param_vals()
    p_vals = list(det_p_vals)
    p_vals[1] += 2
    p_vals[2] -= 2
    p_vals[7] += 2
    p_vals[8] += 2
    p_vals[13] -= 2
    p_vals[14] += 2
    p_vals[19] -= 2
    p_vals[20] -= 2
    det_param.set_param_vals(p_vals)

    # reparameterise the detector at the new perturbed geometry
    det_param = DetectorParameterisationHierarchical(detector, level=1)

    # parameterise other models
    from dials.algorithms.refinement.parameterisation.beam_parameters import \
        BeamParameterisation
    from dials.algorithms.refinement.parameterisation.crystal_parameters import \
        CrystalOrientationParameterisation, CrystalUnitCellParameterisation
    beam_param = BeamParameterisation(beam, goniometer)
    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    # fix beam
    beam_param.set_fixed([True] * 3)

    # fix crystal
    xluc_param.set_fixed([True] * 6)
    xlo_param.set_fixed([True] * 3)

    # parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import \
        XYPhiPredictionParameterisation
    from dials.algorithms.refinement.parameterisation.parameter_report import \
        ParameterReporter
    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [beam_param], [xlo_param],
                                                 [xluc_param])
    param_reporter = ParameterReporter([det_param], [beam_param], [xlo_param],
                                       [xluc_param])

    # reflection manager and target function
    from dials.algorithms.refinement.target import \
      LeastSquaresPositionalResidualWithRmsdCutoff
    from dials.algorithms.refinement.reflection_manager import ReflectionManager
    refman = ReflectionManager(refs, experiments, nref_per_degree=20)

    # set a very tight rmsd target of 1/10000 of a pixel
    target = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None,
        frac_binsize_cutoff=0.0001)

    # minimisation engine
    from dials.algorithms.refinement.engine \
      import LevenbergMarquardtIterations as Refinery
    refinery = Refinery(target=target,
                        prediction_parameterisation=pred_param,
                        log=None,
                        verbosity=0,
                        max_iterations=20)

    # Refiner
    from dials.algorithms.refinement.refiner import Refiner
    refiner = Refiner(reflections=refs,
                      experiments=experiments,
                      pred_param=pred_param,
                      param_reporter=param_reporter,
                      refman=refman,
                      target=target,
                      refinery=refinery,
                      verbosity=0)

    history = refiner.run()
    assert history.reason_for_termination == "RMSD target achieved"

    #compare detector with original detector
    orig_det = im_set.get_detector()
    refined_det = refiner.get_experiments()[0].detector

    from scitbx import matrix
    import math
    for op, rp in zip(orig_det, refined_det):
        # compare the origin vectors by...
        o1 = matrix.col(op.get_origin())
        o2 = matrix.col(rp.get_origin())
        # ...their relative lengths
        assert approx_equal(math.fabs(o1.length() - o2.length()) / o1.length(),
                            0,
                            eps=1e-5)
        # ...the angle between them
        assert approx_equal(o1.accute_angle(o2), 0, eps=1e-5)

    print "OK"
    return