Beispiel #1
0
def test_mpc_assembly(master_point, degree, celltype,
                      get_assemblers):  # noqa: F811

    _, assemble_vector = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 5, celltype)
    V = fem.FunctionSpace(mesh, ("Lagrange", degree))

    # Generate reference vector
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
    rhs = ufl.inner(f, v) * ufl.dx
    linear_form = fem.form(rhs)

    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {
        l2b([1, 0]): {
            l2b([0, 1]): 0.43,
            l2b([1, 1]): 0.11
        },
        l2b([0, 0]): {
            l2b(master_point): 0.69
        }
    }
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()
    b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    # Reduce system with global matrix K after assembly
    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

    list_timings(comm, [TimingType.wall])
def test_homogenize(element, poly_order):
    mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 8, 8)

    V = dolfinx.fem.FunctionSpace(mesh,
                                  element("CG", mesh.ufl_cell(), poly_order))

    def periodic_boundary(x):
        return np.isclose(x[0], 0.0)

    def periodic_relation(x):
        out_x = np.zeros(x.shape)
        out_x[0] = 1.0 - x[0]
        out_x[1] = x[1]
        out_x[2] = x[2]
        return out_x

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_periodic_constraint_geometrical(V, periodic_boundary,
                                               periodic_relation, [])
    mpc.finalize()

    # Sanity check that the MPC class has some constraints to impose
    num_slaves_global = mesh.comm.allreduce(len(mpc.slaves), op=MPI.SUM)
    assert num_slaves_global > 0

    u = dolfinx.fem.Function(V)
    u.vector.set(1.0)

    assert np.isclose(u.vector.min()[1], u.vector.max()[1])
    assert np.isclose(u.vector.array_r[0], 1.0)

    mpc.homogenize(u.vector)

    with u.vector.localForm() as u_:
        for i in range(V.dofmap.index_map.size_local * V.dofmap.index_map_bs):
            if i in mpc.slaves:
                assert np.isclose(u_.array_r[i], 0.0)
            else:
                assert np.isclose(u_.array_r[i], 1.0)
Beispiel #3
0
def test_slave_on_same_cell(master_point, degree, celltype,
                            get_assemblers):  # noqa: F811
    assemble_matrix, _ = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 1, 8, celltype)
    V = fem.FunctionSpace(mesh, ("Lagrange", degree))

    # Build master slave map
    s_m_c = {
        np.array([1, 0], dtype=np.float64).tobytes(): {
            np.array([0, 1], dtype=np.float64).tobytes(): 0.43,
            np.array([1, 1], dtype=np.float64).tobytes(): 0.11
        },
        np.array([0, 0], dtype=np.float64).tobytes(): {
            np.array(master_point, dtype=np.float64).tobytes(): 0.69
        }
    }
    with Timer("~TEST: MPC INIT"):
        mpc = dolfinx_mpc.MultiPointConstraint(V)
        mpc.create_general_constraint(s_m_c)
        mpc.finalize()

    # Test against generated code and general assembler
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    bilinear_form = fem.form(a)

    with Timer("~TEST: Assemble matrix"):
        A_mpc = assemble_matrix(bilinear_form, mpc)

    with Timer("~TEST: Compare with numpy"):
        # Create globally reduced system
        A_org = fem.petsc.assemble_matrix(bilinear_form)
        A_org.assemble()
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A_mpc, mpc)

    list_timings(mesh.comm, [TimingType.wall])
Beispiel #4
0
def test_mpc_assembly(master_point, degree, celltype,
                      get_assemblers):  # noqa: F811
    assemble_matrix, _ = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 5, 3, celltype)
    V = fem.FunctionSpace(mesh, ("Lagrange", degree))

    # Test against generated code and general assembler
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    bilinear_form = fem.form(a)

    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {
        l2b([1, 0]): {
            l2b([0, 1]): 0.43,
            l2b([1, 1]): 0.11
        },
        l2b([0, 0]): {
            l2b(master_point): 0.69
        }
    }
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()
    with Timer("~TEST: Assemble matrix"):
        A_mpc = assemble_matrix(bilinear_form, mpc)

    with Timer("~TEST: Compare with numpy"):
        # Create globally reduced system
        A_org = fem.petsc.assemble_matrix(bilinear_form)
        A_org.assemble()
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A_mpc, mpc)
Beispiel #5
0
def test_pipeline(u_from_mpc):

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 5, 5)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    d = fem.Constant(mesh, PETSc.ScalarType(0.01))
    x = ufl.SpatialCoordinate(mesh)
    f = ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx - d * ufl.inner(u, v) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(bilinear_form)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)

    # Create multipoint constraint
    def periodic_relation(x):
        out_x = np.copy(x)
        out_x[0] = 1 - x[0]
        return out_x

    def PeriodicBoundary(x):
        return np.isclose(x[0], 1)

    facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, PeriodicBoundary)
    arg_sort = np.argsort(facets)
    mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort], np.full(len(facets), 2, dtype=np.int32))

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_periodic_constraint_topological(V, mt, 2, periodic_relation, [], 1)
    mpc.finalize()

    if u_from_mpc:
        uh = fem.Function(mpc.function_space)
        problem = dolfinx_mpc.LinearProblem(bilinear_form, linear_form, mpc, bcs=[], u=uh,
                                            petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
        problem.solve()

        root = 0
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem.A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem.b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    else:
        uh = fem.Function(V)
        with pytest.raises(ValueError):
            problem = dolfinx_mpc.LinearProblem(bilinear_form, linear_form, mpc, bcs=[], u=uh,
                                                petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
            problem.solve()
Beispiel #6
0
def test_vector_possion(Nx, Ny, slave_space, master_space,
                        get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, Nx, Ny)

    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    def boundary(x):
        return np.isclose(x.T, [0, 0, 0]).all(axis=1)

    # Define boundary conditions (HAS TO BE NON-MASTER NODES)
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bdofsV = fem.locate_dofs_geometrical(V, boundary)
    bc = fem.dirichletbc(u_bc, bdofsV)
    bcs = [bc]

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = ufl.as_vector((-5 * x[1], 7 * x[0]))

    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.1, l2b([0.5, 1]): 0.3}}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, slave_space, master_space)
    mpc.finalize()

    with Timer("~TEST: Assemble matrix"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = dolfinx_mpc.assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = b.copy()
    uh.set(0)

    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Generate reference matrices for unconstrained problem
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()

    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
def test_nonlinear_possion(poly_order):
    # Solve a standard Poisson problem with known solution which has
    # rotational symmetry of pi/2 at (x, y) = (0.5, 0.5). Therefore we may
    # impose MPCs on those DoFs which lie on the symmetry plane(s) and test
    # our numerical approximation. We do not impose any constraints at the
    # rotationally degenerate point (x, y) = (0.5, 0.5).

    N_vals = np.array([4, 8, 16], dtype=np.int32)
    l2_error = np.zeros_like(N_vals, dtype=np.double)
    for run_no, N in enumerate(N_vals):
        mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, N, N)

        V = dolfinx.fem.FunctionSpace(mesh, ("Lagrange", poly_order))

        def boundary(x):
            return np.ones_like(x[0], dtype=np.int8)

        u_bc = dolfinx.fem.Function(V)
        with u_bc.vector.localForm() as u_local:
            u_local.set(0.0)

        facets = dolfinx.mesh.locate_entities_boundary(mesh, 1, boundary)
        topological_dofs = dolfinx.fem.locate_dofs_topological(V, 1, facets)
        zero = np.array(0, dtype=PETSc.ScalarType)
        bc = dolfinx.fem.dirichletbc(zero, topological_dofs, V)
        bcs = [bc]

        # Define variational problem
        u = dolfinx.fem.Function(V)
        v = ufl.TestFunction(V)
        x = ufl.SpatialCoordinate(mesh)

        u_soln = ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
        f = -ufl.div((1 + u_soln**2) * ufl.grad(u_soln))

        F = ufl.inner((1 + u**2) * ufl.grad(u), ufl.grad(v)) * ufl.dx \
            - ufl.inner(f, v) * ufl.dx
        J = ufl.derivative(F, u)

        # -- Impose the pi/2 rotational symmetry of the solution as a constraint,
        # -- except at the centre DoF
        def periodic_boundary(x):
            eps = 1e-10
            return np.isclose(x[0], 0.5) & ((x[1] < 0.5 - eps) |
                                            (x[1] > 0.5 + eps))

        def periodic_relation(x):
            out_x = np.zeros(x.shape)
            out_x[0] = x[1]
            out_x[1] = x[0]
            out_x[2] = x[2]
            return out_x

        mpc = dolfinx_mpc.MultiPointConstraint(V)
        mpc.create_periodic_constraint_geometrical(V, periodic_boundary,
                                                   periodic_relation, bcs)
        mpc.finalize()

        # Sanity check that the MPC class has some constraints to impose
        num_slaves_global = mesh.comm.allreduce(len(mpc.slaves), op=MPI.SUM)
        num_masters_global = mesh.comm.allreduce(len(mpc.masters.array),
                                                 op=MPI.SUM)

        assert num_slaves_global > 0
        assert num_masters_global == num_slaves_global

        problem = NonlinearMPCProblem(F, u, mpc, bcs=bcs, J=J)
        solver = NewtonSolverMPC(mesh.comm, problem, mpc)

        # Ensure the solver works with nonzero initial guess
        u.interpolate(lambda x: x[0]**2 * x[1]**2)
        solver.solve(u)

        l2_error_local = dolfinx.fem.assemble_scalar(
            dolfinx.fem.form((u - u_soln)**2 * ufl.dx))
        l2_error_global = mesh.comm.allreduce(l2_error_local, op=MPI.SUM)

        l2_error[run_no] = l2_error_global**0.5

    rates = np.log(l2_error[:-1] / l2_error[1:]) / np.log(2.0)

    assert np.all(rates > poly_order + 0.9)
def test_pipeline(master_point, get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 5)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    d = fem.Constant(mesh, PETSc.ScalarType(1.5))
    c = fem.Constant(mesh, PETSc.ScalarType(2))
    x = ufl.SpatialCoordinate(mesh)
    f = c * ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
    g = fem.Function(V)
    g.interpolate(lambda x: np.sin(x[0]) * x[1])
    h = fem.Function(V)
    h.interpolate(lambda x: 2 + x[1] * x[0])

    a = d * g * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = h * ufl.inner(f, v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(bilinear_form)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {
        l2b([1, 0]): {
            l2b([0, 1]): 0.43,
            l2b([1, 1]): 0.11
        },
        l2b([0, 0]): {
            l2b(master_point): 0.69
        }
    }

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    A = assemble_matrix(bilinear_form, mpc)
    b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):

        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
def test_linearproblem(master_point):

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 5)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    d = fem.Constant(mesh, PETSc.ScalarType(1.5))
    c = fem.Constant(mesh, PETSc.ScalarType(2))
    x = ufl.SpatialCoordinate(mesh)
    f = c * ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
    g = fem.Function(V)
    g.interpolate(lambda x: np.sin(x[0]) * x[1])
    h = fem.Function(V)
    h.interpolate(lambda x: 2 + x[1] * x[0])

    a = d * g * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = h * ufl.inner(f, v) * ufl.dx
    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(fem.form(a))
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(fem.form(rhs))
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {
        l2b([1, 0]): {
            l2b([0, 1]): 0.43,
            l2b([1, 1]): 0.11
        },
        l2b([0, 0]): {
            l2b(master_point): 0.69
        }
    }

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    problem = dolfinx_mpc.LinearProblem(a,
                                        rhs,
                                        mpc,
                                        bcs=[],
                                        petsc_options={
                                            "ksp_type": "preonly",
                                            "pc_type": "lu"
                                        })
    uh = problem.solve()

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem._A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem._b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Beispiel #10
0
def test_surface_integrals(get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers

    N = 4
    mesh = create_unit_square(MPI.COMM_WORLD, N, N)
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Fixed Dirichlet BC on the left wall
    def left_wall(x):
        return np.isclose(x[0], np.finfo(float).eps)

    fdim = mesh.topology.dim - 1
    left_facets = locate_entities_boundary(mesh, fdim, left_wall)
    bc_dofs = fem.locate_dofs_topological(V, 1, left_facets)
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)
    bc = fem.dirichletbc(u_bc, bc_dofs)
    bcs = [bc]

    # Traction on top of domain
    def top(x):
        return np.isclose(x[1], 1)
    top_facets = locate_entities_boundary(mesh, 1, top)
    arg_sort = np.argsort(top_facets)
    mt = meshtags(mesh, fdim, top_facets[arg_sort], np.full(len(top_facets), 3, dtype=np.int32))

    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    g = fem.Constant(mesh, PETSc.ScalarType((0, -9.81e2)))

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e4)
    nu = 0.0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * ufl.sym(ufl.grad(v))
                + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v)))

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType((0, 0))), v) * ufl.dx\
        + ufl.inner(g, v) * ds
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)

    # Setup multipointconstraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()
    s_m_c = {}
    for i in range(1, N):
        s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.8}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, 1, 1)
    mpc.finalize()
    with Timer("~TEST: Assemble matrix old"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Write solution to file
    # u_h = dolfinx.Function(mpc.function_space)
    # u_h.vector.setArray(uh.array)
    # u_h.name = "u_mpc"
    # outfile = dolfinx.io.XDMFFile(MPI.COMM_WORLD, "output/uh.xdmf", "w")
    # outfile.write_mesh(mesh)
    # outfile.write_function(u_h)
    # outfile.close()

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    # Generate reference matrices and unconstrained solution
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Beispiel #11
0
def test_surface_integral_dependency(get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers
    N = 10
    mesh = create_unit_square(MPI.COMM_WORLD, N, N)
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    def top(x):
        return np.isclose(x[1], 1)
    fdim = mesh.topology.dim - 1
    top_facets = locate_entities_boundary(mesh, fdim, top)

    indices = np.array([], dtype=np.intc)
    values = np.array([], dtype=np.intc)
    markers = {3: top_facets}
    for key in markers.keys():
        indices = np.append(indices, markers[key])
        values = np.append(values, np.full(len(markers[key]), key, dtype=np.intc))
    sort = np.argsort(indices)
    mt = meshtags(mesh, mesh.topology.dim - 1, np.array(indices[sort], dtype=np.intc),
                  np.array(values[sort], dtype=np.intc))
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt)
    g = fem.Constant(mesh, PETSc.ScalarType((2, 1)))
    h = fem.Constant(mesh, PETSc.ScalarType((3, 2)))
    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(u, v) * ds(3) + ufl.inner(ufl.grad(u), ufl.grad(v)) * ds
    rhs = ufl.inner(g, v) * ds + ufl.inner(h, v) * ds(3)
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create multipoint constraint and assemble system
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()
    s_m_c = {}
    for i in range(1, N):
        s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.3}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, 1, 1)
    mpc.finalize()
    with Timer("~TEST: Assemble matrix"):
        A = assemble_matrix(bilinear_form, mpc)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values

    # Generate reference matrices and unconstrained solution
    A_org = fem.petsc.assemble_matrix(bilinear_form)
    A_org.assemble()

    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

    list_timings(comm, [TimingType.wall])
Beispiel #12
0
def test_cube_contact(generate_hex_boxes, nonslip,
                      get_assemblers):  # noqa: F811
    assemble_matrix, assemble_vector = get_assemblers
    comm = MPI.COMM_WORLD
    root = 0
    # Generate mesh
    mesh_data = generate_hex_boxes
    mesh, mt = mesh_data
    fdim = mesh.topology.dim - 1
    # Create functionspaces
    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Helper for orienting traction

    # Bottom boundary is fixed in all directions
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5))
    bc_bottom = fem.dirichletbc(u_bc, bottom_dofs)

    g_vec = [0, 0, -4.25e-1]
    if not nonslip:
        # Helper for orienting traction
        r_matrix = dolfinx_mpc.utils.rotation_matrix(
            [1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, [0, 0, -4.25e-1])

    # Top boundary has a given deformation normal to the interface
    def top_v(x):
        values = np.empty((3, x.shape[1]))
        values[0] = g_vec[0]
        values[1] = g_vec[1]
        values[2] = g_vec[2]
        return values

    u_top = fem.Function(V)
    u_top.interpolate(top_v)

    top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3))
    bc_top = fem.dirichletbc(u_top, top_dofs)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * ufl.sym(ufl.grad(v)) +
                lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v)))

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType(
        (0, 0, 0))), v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create LU solver
    solver = PETSc.KSP().create(comm)
    solver.setType("preonly")
    solver.setTolerances(rtol=1.0e-14)
    solver.getPC().setType("lu")

    # Create MPC contact condition and assemble matrices
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    if nonslip:
        with Timer("~Contact: Create non-elastic constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9)
    else:
        with Timer("~Contact: Create contact constraint"):
            nh = dolfinx_mpc.utils.create_normal_approximation(V, mt, 4)
            mpc.create_contact_slip_condition(mt, 4, 9, nh)

    mpc.finalize()

    with Timer("~TEST: Assemble bilinear form"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    with Timer("~MPC: Solve"):
        solver.setOperators(A)
        uh = b.copy()
        uh.set(0)
        solver.solve(b, uh)

    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Write solution to file
    # u_h = fem.Function(mpc.function_space)
    # u_h.vector.setArray(uh.array)
    # u_h.x.scatter_forward()
    # u_h.name = "u_{0:.2f}".format(theta)
    # import dolfinx.io as io
    # with io.XDMFFile(comm, "output/rotated_cube3D.xdmf", "w") as outfile:
    #     outfile.write_mesh(mesh)
    #     outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    dolfinx_mpc.utils.log_info(
        "Solving reference problem with global matrix (using numpy)")

    with Timer("~TEST: Assemble bilinear form (unconstrained)"):
        A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
        A_org.assemble()
        L_org = fem.petsc.assemble_vector(linear_form)
        fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
        L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                          mode=PETSc.ScatterMode.REVERSE)
        fem.petsc.set_bc(L_org, bcs)

    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
Beispiel #13
0
def test_lifting(get_assemblers):  # noqa: F811
    """
    Test MPC lifting operation on a single cell
    """
    assemble_matrix, assemble_vector = get_assemblers

    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 1, 1, CellType.quadrilateral)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = x[1] * ufl.sin(2 * ufl.pi * x[0])
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx

    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create Dirichlet boundary condition
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(2.3)

    def dirichletboundary(x):
        return np.isclose(x[0], 1)

    mesh.topology.create_connectivity(2, 1)
    geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary)
    bc = fem.dirichletbc(u_bc, geometrical_dofs)
    bcs = [bc]

    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs=bcs)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    # Create multipoint constraint

    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {l2b([0, 0]): {l2b([0, 1]): 1}}

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    b = assemble_vector(linear_form, mpc)
    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    fem.petsc.set_bc(b, bcs)

    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)
    # Solve
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    V_mpc = mpc.function_space
    u_out = fem.Function(V_mpc)
    u_out.vector.array[:] = uh.array

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):

        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)
        # constants = dolfinx_mpc.utils.gather_contants(mpc, root=root)
        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ (L_np)  # - constants)
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vecto
            uh_numpy = K @ (d)  # + constants)
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
def test_cell_domains(get_assemblers):  # noqa: F811
    """
    Periodic MPC conditions over integral with different cell subdomains
    """
    assemble_matrix, assemble_vector = get_assemblers
    N = 5
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 15, N)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))

    def left_side(x):
        return x[0] < 0.5

    tdim = mesh.topology.dim
    num_cells = mesh.topology.index_map(tdim).size_local
    cell_midpoints = compute_midpoints(mesh, tdim, range(num_cells))
    values = np.ones(num_cells, dtype=np.intc)
    # All cells on right side marked one, all other with 1
    values += left_side(cell_midpoints.T)
    ct = meshtags(mesh, mesh.topology.dim, np.arange(num_cells,
                                                     dtype=np.int32), values)

    # Solve Problem without MPC for reference
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    c1 = fem.Constant(mesh, PETSc.ScalarType(2))
    c2 = fem.Constant(mesh, PETSc.ScalarType(10))

    dx = ufl.Measure("dx", domain=mesh, subdomain_data=ct)
    a = c1 * ufl.inner(ufl.grad(u), ufl.grad(v)) * dx(1) +\
        c2 * ufl.inner(ufl.grad(u), ufl.grad(v)) * dx(2)\
        + 0.01 * ufl.inner(u, v) * dx(1)

    rhs = ufl.inner(x[1], v) * dx(1) + \
        ufl.inner(fem.Constant(mesh, PETSc.ScalarType(1)), v) * dx(2)
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Generate reference matrices
    A_org = fem.petsc.assemble_matrix(bilinear_form)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)

    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {}
    for i in range(0, N + 1):
        s_m_c[l2b([1, i / N])] = {l2b([0, i / N]): 1}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c)
    mpc.finalize()

    # Setup MPC system
    with Timer("~TEST: Assemble matrix old"):
        A = assemble_matrix(bilinear_form, mpc)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)

    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = b.copy()
    uh.set(0)
    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    mpc.backsubstitution(uh)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)
    list_timings(comm, [TimingType.wall])
Beispiel #15
0
# ----------------------Defining boundary conditions----------------------
# Inlet velocity Dirichlet BC
inlet_velocity = dolfinx.fem.Function(V)
inlet_velocity.interpolate(inlet_velocity_expression)
inlet_velocity.x.scatter_forward()
dofs = dolfinx.fem.locate_dofs_topological(V, 1, mt.find(3))
bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs)

# Collect Dirichlet boundary conditions
bcs = [bc1]

# Slip conditions for walls
n = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
with dolfinx.common.Timer("~Stokes: Create slip constraint"):
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_slip_constraint(V, (mt, 1), n, bcs=bcs)
mpc.finalize()

mpc_q = dolfinx_mpc.MultiPointConstraint(Q)
mpc_q.finalize()


def tangential_proj(u: Expr, n: Expr):
    """
    See for instance:
    https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf
    """
    return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u

Beispiel #16
0
def test_mixed_element(cell_type, ghost_mode):
    N = 4
    mesh = dolfinx.mesh.create_unit_square(
        MPI.COMM_WORLD, N, N, cell_type=cell_type, ghost_mode=ghost_mode)

    # Inlet velocity Dirichlet BC
    bc_facets = dolfinx.mesh.locate_entities_boundary(
        mesh, mesh.topology.dim - 1, lambda x: np.isclose(x[0], 0.0))
    other_facets = dolfinx.mesh.locate_entities_boundary(
        mesh, mesh.topology.dim - 1, lambda x: np.isclose(x[0], 1.0))
    arg_sort = np.argsort(other_facets)
    mt = dolfinx.mesh.meshtags(mesh, mesh.topology.dim - 1,
                               other_facets[arg_sort], np.full_like(other_facets, 1))

    # Rotate the mesh to induce more interesting slip BCs
    th = np.pi / 4.0
    rot = np.array([[np.cos(th), -np.sin(th)],
                    [np.sin(th), np.cos(th)]])
    gdim = mesh.geometry.dim
    mesh.geometry.x[:, :gdim] = (rot @ mesh.geometry.x[:, :gdim].T).T

    # Create the function space
    Ve = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    Qe = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    V = dolfinx.fem.FunctionSpace(mesh, Ve)
    Q = dolfinx.fem.FunctionSpace(mesh, Qe)
    W = dolfinx.fem.FunctionSpace(mesh, Ve * Qe)

    inlet_velocity = dolfinx.fem.Function(V)
    inlet_velocity.interpolate(
        lambda x: np.zeros((mesh.geometry.dim, x[0].shape[0]), dtype=np.double))
    inlet_velocity.x.scatter_forward()

    # -- Nested assembly
    dofs = dolfinx.fem.locate_dofs_topological(V, 1, bc_facets)
    bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs)

    # Collect Dirichlet boundary conditions
    bcs = [bc1]
    mpc_v = dolfinx_mpc.MultiPointConstraint(V)
    n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
    mpc_v.create_slip_constraint(V, (mt, 1), n_approx, bcs=bcs)
    mpc_v.finalize()

    mpc_q = dolfinx_mpc.MultiPointConstraint(Q)
    mpc_q.finalize()

    f = dolfinx.fem.Constant(mesh, PETSc.ScalarType((0, 0)))
    (u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
    (v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)
    a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    a01 = - ufl.inner(p, ufl.div(v)) * ufl.dx
    a10 = - ufl.inner(ufl.div(u), q) * ufl.dx
    a11 = None

    L0 = ufl.inner(f, v) * ufl.dx
    L1 = ufl.inner(
        dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx

    n = ufl.FacetNormal(mesh)
    g_tau = ufl.as_vector((0.0, 0.0))
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1)

    a00 -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds
    a01 -= ufl.inner(ufl.outer(n, n) * ufl.dot(
        - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds
    L0 += ufl.inner(g_tau, v) * ds

    a_nest = dolfinx.fem.form(((a00, a01),
                               (a10, a11)))
    L_nest = dolfinx.fem.form((L0, L1))

    # Assemble MPC nest matrix
    A_nest = dolfinx_mpc.create_matrix_nest(a_nest, [mpc_v, mpc_q])
    dolfinx_mpc.assemble_matrix_nest(A_nest, a_nest, [mpc_v, mpc_q], bcs)
    A_nest.assemble()

    # Assemble original nest matrix
    A_org_nest = dolfinx.fem.petsc.assemble_matrix_nest(a_nest, bcs)
    A_org_nest.assemble()

    # MPC nested rhs
    b_nest = dolfinx_mpc.create_vector_nest(L_nest, [mpc_v, mpc_q])
    dolfinx_mpc.assemble_vector_nest(b_nest, L_nest, [mpc_v, mpc_q])
    dolfinx.fem.petsc.apply_lifting_nest(b_nest, a_nest, bcs)

    for b_sub in b_nest.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)

    bcs0 = dolfinx.fem.bcs_by_block(
        dolfinx.fem.extract_function_spaces(L_nest), bcs)
    dolfinx.fem.petsc.set_bc_nest(b_nest, bcs0)

    # Original dolfinx rhs
    b_org_nest = dolfinx.fem.petsc.assemble_vector_nest(L_nest)
    dolfinx.fem.petsc.apply_lifting_nest(b_org_nest, a_nest, bcs)

    for b_sub in b_org_nest.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc_nest(b_org_nest, bcs0)

    # -- Monolithic assembly
    dofs = dolfinx.fem.locate_dofs_topological((W.sub(0), V), 1, bc_facets)
    bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W.sub(0))

    bcs = [bc1]

    V, V_to_W = W.sub(0).collapse()
    mpc_vq = dolfinx_mpc.MultiPointConstraint(W)
    n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
    mpc_vq.create_slip_constraint(W.sub(0), (mt, 1), n_approx, bcs=bcs)
    mpc_vq.finalize()

    f = dolfinx.fem.Constant(mesh, PETSc.ScalarType((0, 0)))
    (u, p) = ufl.TrialFunctions(W)
    (v, q) = ufl.TestFunctions(W)
    a = (
        ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
        - ufl.inner(p, ufl.div(v)) * ufl.dx
        - ufl.inner(ufl.div(u), q) * ufl.dx
    )

    L = ufl.inner(f, v) * ufl.dx + ufl.inner(
        dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx

    # No prescribed shear stress
    n = ufl.FacetNormal(mesh)
    g_tau = ufl.as_vector((0.0, 0.0))
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1)

    # Terms due to slip condition
    # Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf
    a -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds
    a -= ufl.inner(ufl.outer(n, n) * ufl.dot(
        - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds
    L += ufl.inner(g_tau, v) * ds

    a, L = dolfinx.fem.form(a), dolfinx.fem.form(L)

    # Assemble LHS matrix and RHS vector
    A = dolfinx_mpc.assemble_matrix(a, mpc_vq, bcs)
    A.assemble()
    A_org = dolfinx.fem.petsc.assemble_matrix(a, bcs)
    A_org.assemble()

    b = dolfinx_mpc.assemble_vector(L, mpc_vq)
    b_org = dolfinx.fem.petsc.assemble_vector(L)

    # Set Dirichlet boundary condition values in the RHS
    dolfinx_mpc.apply_lifting(b, [a], [bcs], mpc_vq)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc(b, bcs)
    dolfinx.fem.petsc.apply_lifting(b_org, [a], [bcs])
    b_org.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc(b_org, bcs)

    # -- Verification
    def nest_matrix_norm(A):
        assert A.getType() == "nest"
        nrows, ncols = A.getNestSize()
        sub_A = [A.getNestSubMatrix(row, col)
                 for row in range(nrows) for col in range(ncols)]
        return sum(map(lambda A_: A_.norm()**2 if A_ else 0.0, sub_A))**0.5

    # -- Ensure monolithic and nest matrices are the same
    assert np.isclose(nest_matrix_norm(A_nest), A.norm())