def test_mpc_assembly(master_point, degree, celltype, get_assemblers): # noqa: F811 _, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 3, 5, celltype) V = fem.FunctionSpace(mesh, ("Lagrange", degree)) # Generate reference vector v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) f = ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) rhs = ufl.inner(f, v) * ufl.dx linear_form = fem.form(rhs) def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = { l2b([1, 0]): { l2b([0, 1]): 0.43, l2b([1, 1]): 0.11 }, l2b([0, 0]): { l2b(master_point): 0.69 } } mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() b = assemble_vector(linear_form, mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Reduce system with global matrix K after assembly L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) list_timings(comm, [TimingType.wall])
def test_homogenize(element, poly_order): mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 8, 8) V = dolfinx.fem.FunctionSpace(mesh, element("CG", mesh.ufl_cell(), poly_order)) def periodic_boundary(x): return np.isclose(x[0], 0.0) def periodic_relation(x): out_x = np.zeros(x.shape) out_x[0] = 1.0 - x[0] out_x[1] = x[1] out_x[2] = x[2] return out_x mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, []) mpc.finalize() # Sanity check that the MPC class has some constraints to impose num_slaves_global = mesh.comm.allreduce(len(mpc.slaves), op=MPI.SUM) assert num_slaves_global > 0 u = dolfinx.fem.Function(V) u.vector.set(1.0) assert np.isclose(u.vector.min()[1], u.vector.max()[1]) assert np.isclose(u.vector.array_r[0], 1.0) mpc.homogenize(u.vector) with u.vector.localForm() as u_: for i in range(V.dofmap.index_map.size_local * V.dofmap.index_map_bs): if i in mpc.slaves: assert np.isclose(u_.array_r[i], 0.0) else: assert np.isclose(u_.array_r[i], 1.0)
def test_slave_on_same_cell(master_point, degree, celltype, get_assemblers): # noqa: F811 assemble_matrix, _ = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 1, 8, celltype) V = fem.FunctionSpace(mesh, ("Lagrange", degree)) # Build master slave map s_m_c = { np.array([1, 0], dtype=np.float64).tobytes(): { np.array([0, 1], dtype=np.float64).tobytes(): 0.43, np.array([1, 1], dtype=np.float64).tobytes(): 0.11 }, np.array([0, 0], dtype=np.float64).tobytes(): { np.array(master_point, dtype=np.float64).tobytes(): 0.69 } } with Timer("~TEST: MPC INIT"): mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() # Test against generated code and general assembler u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx bilinear_form = fem.form(a) with Timer("~TEST: Assemble matrix"): A_mpc = assemble_matrix(bilinear_form, mpc) with Timer("~TEST: Compare with numpy"): # Create globally reduced system A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() dolfinx_mpc.utils.compare_mpc_lhs(A_org, A_mpc, mpc) list_timings(mesh.comm, [TimingType.wall])
def test_mpc_assembly(master_point, degree, celltype, get_assemblers): # noqa: F811 assemble_matrix, _ = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 5, 3, celltype) V = fem.FunctionSpace(mesh, ("Lagrange", degree)) # Test against generated code and general assembler u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx bilinear_form = fem.form(a) def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = { l2b([1, 0]): { l2b([0, 1]): 0.43, l2b([1, 1]): 0.11 }, l2b([0, 0]): { l2b(master_point): 0.69 } } mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() with Timer("~TEST: Assemble matrix"): A_mpc = assemble_matrix(bilinear_form, mpc) with Timer("~TEST: Compare with numpy"): # Create globally reduced system A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() dolfinx_mpc.utils.compare_mpc_lhs(A_org, A_mpc, mpc)
def test_pipeline(u_from_mpc): # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 5, 5) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) d = fem.Constant(mesh, PETSc.ScalarType(0.01)) x = ufl.SpatialCoordinate(mesh) f = ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx - d * ufl.inner(u, v) * ufl.dx rhs = ufl.inner(f, v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Generate reference matrices A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Create multipoint constraint def periodic_relation(x): out_x = np.copy(x) out_x[0] = 1 - x[0] return out_x def PeriodicBoundary(x): return np.isclose(x[0], 1) facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, PeriodicBoundary) arg_sort = np.argsort(facets) mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort], np.full(len(facets), 2, dtype=np.int32)) mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_periodic_constraint_topological(V, mt, 2, periodic_relation, [], 1) mpc.finalize() if u_from_mpc: uh = fem.Function(mpc.function_space) problem = dolfinx_mpc.LinearProblem(bilinear_form, linear_form, mpc, bcs=[], u=uh, petsc_options={"ksp_type": "preonly", "pc_type": "lu"}) problem.solve() root = 0 dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem.A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem.b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) else: uh = fem.Function(V) with pytest.raises(ValueError): problem = dolfinx_mpc.LinearProblem(bilinear_form, linear_form, mpc, bcs=[], u=uh, petsc_options={"ksp_type": "preonly", "pc_type": "lu"}) problem.solve()
def test_vector_possion(Nx, Ny, slave_space, master_space, get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, Nx, Ny) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) def boundary(x): return np.isclose(x.T, [0, 0, 0]).all(axis=1) # Define boundary conditions (HAS TO BE NON-MASTER NODES) u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) bdofsV = fem.locate_dofs_geometrical(V, boundary) bc = fem.dirichletbc(u_bc, bdofsV) bcs = [bc] # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) f = ufl.as_vector((-5 * x[1], 7 * x[0])) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(f, v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Setup LU solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.1, l2b([0.5, 1]): 0.3}} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, slave_space, master_space) mpc.finalize() with Timer("~TEST: Assemble matrix"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer("~TEST: Assemble vector"): b = dolfinx_mpc.assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) solver.setOperators(A) uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) # Generate reference matrices for unconstrained problem A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_nonlinear_possion(poly_order): # Solve a standard Poisson problem with known solution which has # rotational symmetry of pi/2 at (x, y) = (0.5, 0.5). Therefore we may # impose MPCs on those DoFs which lie on the symmetry plane(s) and test # our numerical approximation. We do not impose any constraints at the # rotationally degenerate point (x, y) = (0.5, 0.5). N_vals = np.array([4, 8, 16], dtype=np.int32) l2_error = np.zeros_like(N_vals, dtype=np.double) for run_no, N in enumerate(N_vals): mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, N, N) V = dolfinx.fem.FunctionSpace(mesh, ("Lagrange", poly_order)) def boundary(x): return np.ones_like(x[0], dtype=np.int8) u_bc = dolfinx.fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) facets = dolfinx.mesh.locate_entities_boundary(mesh, 1, boundary) topological_dofs = dolfinx.fem.locate_dofs_topological(V, 1, facets) zero = np.array(0, dtype=PETSc.ScalarType) bc = dolfinx.fem.dirichletbc(zero, topological_dofs, V) bcs = [bc] # Define variational problem u = dolfinx.fem.Function(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) u_soln = ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) f = -ufl.div((1 + u_soln**2) * ufl.grad(u_soln)) F = ufl.inner((1 + u**2) * ufl.grad(u), ufl.grad(v)) * ufl.dx \ - ufl.inner(f, v) * ufl.dx J = ufl.derivative(F, u) # -- Impose the pi/2 rotational symmetry of the solution as a constraint, # -- except at the centre DoF def periodic_boundary(x): eps = 1e-10 return np.isclose(x[0], 0.5) & ((x[1] < 0.5 - eps) | (x[1] > 0.5 + eps)) def periodic_relation(x): out_x = np.zeros(x.shape) out_x[0] = x[1] out_x[1] = x[0] out_x[2] = x[2] return out_x mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, bcs) mpc.finalize() # Sanity check that the MPC class has some constraints to impose num_slaves_global = mesh.comm.allreduce(len(mpc.slaves), op=MPI.SUM) num_masters_global = mesh.comm.allreduce(len(mpc.masters.array), op=MPI.SUM) assert num_slaves_global > 0 assert num_masters_global == num_slaves_global problem = NonlinearMPCProblem(F, u, mpc, bcs=bcs, J=J) solver = NewtonSolverMPC(mesh.comm, problem, mpc) # Ensure the solver works with nonzero initial guess u.interpolate(lambda x: x[0]**2 * x[1]**2) solver.solve(u) l2_error_local = dolfinx.fem.assemble_scalar( dolfinx.fem.form((u - u_soln)**2 * ufl.dx)) l2_error_global = mesh.comm.allreduce(l2_error_local, op=MPI.SUM) l2_error[run_no] = l2_error_global**0.5 rates = np.log(l2_error[:-1] / l2_error[1:]) / np.log(2.0) assert np.all(rates > poly_order + 0.9)
def test_pipeline(master_point, get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 3, 5) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) d = fem.Constant(mesh, PETSc.ScalarType(1.5)) c = fem.Constant(mesh, PETSc.ScalarType(2)) x = ufl.SpatialCoordinate(mesh) f = c * ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) g = fem.Function(V) g.interpolate(lambda x: np.sin(x[0]) * x[1]) h = fem.Function(V) h.interpolate(lambda x: 2 + x[1] * x[0]) a = d * g * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = h * ufl.inner(f, v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Generate reference matrices A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = { l2b([1, 0]): { l2b([0, 1]): 0.43, l2b([1, 1]): 0.11 }, l2b([0, 0]): { l2b(master_point): 0.69 } } mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() A = assemble_matrix(bilinear_form, mpc) b = assemble_vector(linear_form, mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_linearproblem(master_point): # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 3, 5) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) d = fem.Constant(mesh, PETSc.ScalarType(1.5)) c = fem.Constant(mesh, PETSc.ScalarType(2)) x = ufl.SpatialCoordinate(mesh) f = c * ufl.sin(2 * ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) g = fem.Function(V) g.interpolate(lambda x: np.sin(x[0]) * x[1]) h = fem.Function(V) h.interpolate(lambda x: 2 + x[1] * x[0]) a = d * g * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = h * ufl.inner(f, v) * ufl.dx # Generate reference matrices A_org = fem.petsc.assemble_matrix(fem.form(a)) A_org.assemble() L_org = fem.petsc.assemble_vector(fem.form(rhs)) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = { l2b([1, 0]): { l2b([0, 1]): 0.43, l2b([1, 1]): 0.11 }, l2b([0, 0]): { l2b(master_point): 0.69 } } mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() problem = dolfinx_mpc.LinearProblem(a, rhs, mpc, bcs=[], petsc_options={ "ksp_type": "preonly", "pc_type": "lu" }) uh = problem.solve() root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem._A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem._b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_surface_integrals(get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers N = 4 mesh = create_unit_square(MPI.COMM_WORLD, N, N) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) # Fixed Dirichlet BC on the left wall def left_wall(x): return np.isclose(x[0], np.finfo(float).eps) fdim = mesh.topology.dim - 1 left_facets = locate_entities_boundary(mesh, fdim, left_wall) bc_dofs = fem.locate_dofs_topological(V, 1, left_facets) u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) bc = fem.dirichletbc(u_bc, bc_dofs) bcs = [bc] # Traction on top of domain def top(x): return np.isclose(x[1], 1) top_facets = locate_entities_boundary(mesh, 1, top) arg_sort = np.argsort(top_facets) mt = meshtags(mesh, fdim, top_facets[arg_sort], np.full(len(top_facets), 3, dtype=np.int32)) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3) g = fem.Constant(mesh, PETSc.ScalarType((0, -9.81e2))) # Elasticity parameters E = PETSc.ScalarType(1.0e4) nu = 0.0 mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * ufl.sym(ufl.grad(v)) + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v))) # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType((0, 0))), v) * ufl.dx\ + ufl.inner(g, v) * ds bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Setup LU solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) # Setup multipointconstraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {} for i in range(1, N): s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.8} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, 1, 1) mpc.finalize() with Timer("~TEST: Assemble matrix old"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer("~TEST: Assemble vector"): b = assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) solver.setOperators(A) uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) # Write solution to file # u_h = dolfinx.Function(mpc.function_space) # u_h.vector.setArray(uh.array) # u_h.name = "u_mpc" # outfile = dolfinx.io.XDMFFile(MPI.COMM_WORLD, "output/uh.xdmf", "w") # outfile.write_mesh(mesh) # outfile.write_function(u_h) # outfile.close() # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values # Generate reference matrices and unconstrained solution A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_surface_integral_dependency(get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers N = 10 mesh = create_unit_square(MPI.COMM_WORLD, N, N) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) def top(x): return np.isclose(x[1], 1) fdim = mesh.topology.dim - 1 top_facets = locate_entities_boundary(mesh, fdim, top) indices = np.array([], dtype=np.intc) values = np.array([], dtype=np.intc) markers = {3: top_facets} for key in markers.keys(): indices = np.append(indices, markers[key]) values = np.append(values, np.full(len(markers[key]), key, dtype=np.intc)) sort = np.argsort(indices) mt = meshtags(mesh, mesh.topology.dim - 1, np.array(indices[sort], dtype=np.intc), np.array(values[sort], dtype=np.intc)) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt) g = fem.Constant(mesh, PETSc.ScalarType((2, 1))) h = fem.Constant(mesh, PETSc.ScalarType((3, 2))) # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(u, v) * ds(3) + ufl.inner(ufl.grad(u), ufl.grad(v)) * ds rhs = ufl.inner(g, v) * ds + ufl.inner(h, v) * ds(3) bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Create multipoint constraint and assemble system def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {} for i in range(1, N): s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.3} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, 1, 1) mpc.finalize() with Timer("~TEST: Assemble matrix"): A = assemble_matrix(bilinear_form, mpc) with Timer("~TEST: Assemble vector"): b = assemble_vector(linear_form, mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values # Generate reference matrices and unconstrained solution A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) list_timings(comm, [TimingType.wall])
def test_cube_contact(generate_hex_boxes, nonslip, get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers comm = MPI.COMM_WORLD root = 0 # Generate mesh mesh_data = generate_hex_boxes mesh, mt = mesh_data fdim = mesh.topology.dim - 1 # Create functionspaces V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) # Helper for orienting traction # Bottom boundary is fixed in all directions u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5)) bc_bottom = fem.dirichletbc(u_bc, bottom_dofs) g_vec = [0, 0, -4.25e-1] if not nonslip: # Helper for orienting traction r_matrix = dolfinx_mpc.utils.rotation_matrix( [1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta) # Top boundary has a given deformation normal to the interface g_vec = np.dot(r_matrix, [0, 0, -4.25e-1]) # Top boundary has a given deformation normal to the interface def top_v(x): values = np.empty((3, x.shape[1])) values[0] = g_vec[0] values[1] = g_vec[1] values[2] = g_vec[2] return values u_top = fem.Function(V) u_top.interpolate(top_v) top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3)) bc_top = fem.dirichletbc(u_top, top_dofs) bcs = [bc_bottom, bc_top] # Elasticity parameters E = PETSc.ScalarType(1.0e3) nu = 0 mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * ufl.sym(ufl.grad(v)) + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v))) # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(fem.Constant(mesh, PETSc.ScalarType( (0, 0, 0))), v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Create LU solver solver = PETSc.KSP().create(comm) solver.setType("preonly") solver.setTolerances(rtol=1.0e-14) solver.getPC().setType("lu") # Create MPC contact condition and assemble matrices mpc = dolfinx_mpc.MultiPointConstraint(V) if nonslip: with Timer("~Contact: Create non-elastic constraint"): mpc.create_contact_inelastic_condition(mt, 4, 9) else: with Timer("~Contact: Create contact constraint"): nh = dolfinx_mpc.utils.create_normal_approximation(V, mt, 4) mpc.create_contact_slip_condition(mt, 4, 9, nh) mpc.finalize() with Timer("~TEST: Assemble bilinear form"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer("~TEST: Assemble vector"): b = assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) with Timer("~MPC: Solve"): solver.setOperators(A) uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) # Write solution to file # u_h = fem.Function(mpc.function_space) # u_h.vector.setArray(uh.array) # u_h.x.scatter_forward() # u_h.name = "u_{0:.2f}".format(theta) # import dolfinx.io as io # with io.XDMFFile(comm, "output/rotated_cube3D.xdmf", "w") as outfile: # outfile.write_mesh(mesh) # outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]") # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values dolfinx_mpc.utils.log_info( "Solving reference problem with global matrix (using numpy)") with Timer("~TEST: Assemble bilinear form (unconstrained)"): A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_lifting(get_assemblers): # noqa: F811 """ Test MPC lifting operation on a single cell """ assemble_matrix, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 1, 1, CellType.quadrilateral) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) f = x[1] * ufl.sin(2 * ufl.pi * x[0]) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(f, v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Create Dirichlet boundary condition u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(2.3) def dirichletboundary(x): return np.isclose(x[0], 1) mesh.topology.create_connectivity(2, 1) geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary) bc = fem.dirichletbc(u_bc, geometrical_dofs) bcs = [bc] # Generate reference matrices A_org = fem.petsc.assemble_matrix(bilinear_form, bcs=bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {l2b([0, 0]): {l2b([0, 1]): 1}} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() A = assemble_matrix(bilinear_form, mpc, bcs=bcs) b = assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) V_mpc = mpc.function_space u_out = fem.Function(V_mpc) u_out.vector.array[:] = uh.array root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) # constants = dolfinx_mpc.utils.gather_contants(mpc, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ (L_np) # - constants) # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vecto uh_numpy = K @ (d) # + constants) assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
def test_cell_domains(get_assemblers): # noqa: F811 """ Periodic MPC conditions over integral with different cell subdomains """ assemble_matrix, assemble_vector = get_assemblers N = 5 # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 15, N) V = fem.FunctionSpace(mesh, ("Lagrange", 1)) def left_side(x): return x[0] < 0.5 tdim = mesh.topology.dim num_cells = mesh.topology.index_map(tdim).size_local cell_midpoints = compute_midpoints(mesh, tdim, range(num_cells)) values = np.ones(num_cells, dtype=np.intc) # All cells on right side marked one, all other with 1 values += left_side(cell_midpoints.T) ct = meshtags(mesh, mesh.topology.dim, np.arange(num_cells, dtype=np.int32), values) # Solve Problem without MPC for reference u = ufl.TrialFunction(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) c1 = fem.Constant(mesh, PETSc.ScalarType(2)) c2 = fem.Constant(mesh, PETSc.ScalarType(10)) dx = ufl.Measure("dx", domain=mesh, subdomain_data=ct) a = c1 * ufl.inner(ufl.grad(u), ufl.grad(v)) * dx(1) +\ c2 * ufl.inner(ufl.grad(u), ufl.grad(v)) * dx(2)\ + 0.01 * ufl.inner(u, v) * dx(1) rhs = ufl.inner(x[1], v) * dx(1) + \ ufl.inner(fem.Constant(mesh, PETSc.ScalarType(1)), v) * dx(2) bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Generate reference matrices A_org = fem.petsc.assemble_matrix(bilinear_form) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {} for i in range(0, N + 1): s_m_c[l2b([1, i / N])] = {l2b([0, i / N]): 1} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c) mpc.finalize() # Setup MPC system with Timer("~TEST: Assemble matrix old"): A = assemble_matrix(bilinear_form, mpc) with Timer("~TEST: Assemble vector"): b = assemble_vector(linear_form, mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) # Solve uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
# ----------------------Defining boundary conditions---------------------- # Inlet velocity Dirichlet BC inlet_velocity = dolfinx.fem.Function(V) inlet_velocity.interpolate(inlet_velocity_expression) inlet_velocity.x.scatter_forward() dofs = dolfinx.fem.locate_dofs_topological(V, 1, mt.find(3)) bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs) # Collect Dirichlet boundary conditions bcs = [bc1] # Slip conditions for walls n = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1) with dolfinx.common.Timer("~Stokes: Create slip constraint"): mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_slip_constraint(V, (mt, 1), n, bcs=bcs) mpc.finalize() mpc_q = dolfinx_mpc.MultiPointConstraint(Q) mpc_q.finalize() def tangential_proj(u: Expr, n: Expr): """ See for instance: https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf """ return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u
def test_mixed_element(cell_type, ghost_mode): N = 4 mesh = dolfinx.mesh.create_unit_square( MPI.COMM_WORLD, N, N, cell_type=cell_type, ghost_mode=ghost_mode) # Inlet velocity Dirichlet BC bc_facets = dolfinx.mesh.locate_entities_boundary( mesh, mesh.topology.dim - 1, lambda x: np.isclose(x[0], 0.0)) other_facets = dolfinx.mesh.locate_entities_boundary( mesh, mesh.topology.dim - 1, lambda x: np.isclose(x[0], 1.0)) arg_sort = np.argsort(other_facets) mt = dolfinx.mesh.meshtags(mesh, mesh.topology.dim - 1, other_facets[arg_sort], np.full_like(other_facets, 1)) # Rotate the mesh to induce more interesting slip BCs th = np.pi / 4.0 rot = np.array([[np.cos(th), -np.sin(th)], [np.sin(th), np.cos(th)]]) gdim = mesh.geometry.dim mesh.geometry.x[:, :gdim] = (rot @ mesh.geometry.x[:, :gdim].T).T # Create the function space Ve = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2) Qe = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1) V = dolfinx.fem.FunctionSpace(mesh, Ve) Q = dolfinx.fem.FunctionSpace(mesh, Qe) W = dolfinx.fem.FunctionSpace(mesh, Ve * Qe) inlet_velocity = dolfinx.fem.Function(V) inlet_velocity.interpolate( lambda x: np.zeros((mesh.geometry.dim, x[0].shape[0]), dtype=np.double)) inlet_velocity.x.scatter_forward() # -- Nested assembly dofs = dolfinx.fem.locate_dofs_topological(V, 1, bc_facets) bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs) # Collect Dirichlet boundary conditions bcs = [bc1] mpc_v = dolfinx_mpc.MultiPointConstraint(V) n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1) mpc_v.create_slip_constraint(V, (mt, 1), n_approx, bcs=bcs) mpc_v.finalize() mpc_q = dolfinx_mpc.MultiPointConstraint(Q) mpc_q.finalize() f = dolfinx.fem.Constant(mesh, PETSc.ScalarType((0, 0))) (u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q) (v, q) = ufl.TestFunction(V), ufl.TestFunction(Q) a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx a01 = - ufl.inner(p, ufl.div(v)) * ufl.dx a10 = - ufl.inner(ufl.div(u), q) * ufl.dx a11 = None L0 = ufl.inner(f, v) * ufl.dx L1 = ufl.inner( dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx n = ufl.FacetNormal(mesh) g_tau = ufl.as_vector((0.0, 0.0)) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1) a00 -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds a01 -= ufl.inner(ufl.outer(n, n) * ufl.dot( - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds L0 += ufl.inner(g_tau, v) * ds a_nest = dolfinx.fem.form(((a00, a01), (a10, a11))) L_nest = dolfinx.fem.form((L0, L1)) # Assemble MPC nest matrix A_nest = dolfinx_mpc.create_matrix_nest(a_nest, [mpc_v, mpc_q]) dolfinx_mpc.assemble_matrix_nest(A_nest, a_nest, [mpc_v, mpc_q], bcs) A_nest.assemble() # Assemble original nest matrix A_org_nest = dolfinx.fem.petsc.assemble_matrix_nest(a_nest, bcs) A_org_nest.assemble() # MPC nested rhs b_nest = dolfinx_mpc.create_vector_nest(L_nest, [mpc_v, mpc_q]) dolfinx_mpc.assemble_vector_nest(b_nest, L_nest, [mpc_v, mpc_q]) dolfinx.fem.petsc.apply_lifting_nest(b_nest, a_nest, bcs) for b_sub in b_nest.getNestSubVecs(): b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) bcs0 = dolfinx.fem.bcs_by_block( dolfinx.fem.extract_function_spaces(L_nest), bcs) dolfinx.fem.petsc.set_bc_nest(b_nest, bcs0) # Original dolfinx rhs b_org_nest = dolfinx.fem.petsc.assemble_vector_nest(L_nest) dolfinx.fem.petsc.apply_lifting_nest(b_org_nest, a_nest, bcs) for b_sub in b_org_nest.getNestSubVecs(): b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) dolfinx.fem.petsc.set_bc_nest(b_org_nest, bcs0) # -- Monolithic assembly dofs = dolfinx.fem.locate_dofs_topological((W.sub(0), V), 1, bc_facets) bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W.sub(0)) bcs = [bc1] V, V_to_W = W.sub(0).collapse() mpc_vq = dolfinx_mpc.MultiPointConstraint(W) n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1) mpc_vq.create_slip_constraint(W.sub(0), (mt, 1), n_approx, bcs=bcs) mpc_vq.finalize() f = dolfinx.fem.Constant(mesh, PETSc.ScalarType((0, 0))) (u, p) = ufl.TrialFunctions(W) (v, q) = ufl.TestFunctions(W) a = ( ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx - ufl.inner(p, ufl.div(v)) * ufl.dx - ufl.inner(ufl.div(u), q) * ufl.dx ) L = ufl.inner(f, v) * ufl.dx + ufl.inner( dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx # No prescribed shear stress n = ufl.FacetNormal(mesh) g_tau = ufl.as_vector((0.0, 0.0)) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1) # Terms due to slip condition # Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf a -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds a -= ufl.inner(ufl.outer(n, n) * ufl.dot( - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds L += ufl.inner(g_tau, v) * ds a, L = dolfinx.fem.form(a), dolfinx.fem.form(L) # Assemble LHS matrix and RHS vector A = dolfinx_mpc.assemble_matrix(a, mpc_vq, bcs) A.assemble() A_org = dolfinx.fem.petsc.assemble_matrix(a, bcs) A_org.assemble() b = dolfinx_mpc.assemble_vector(L, mpc_vq) b_org = dolfinx.fem.petsc.assemble_vector(L) # Set Dirichlet boundary condition values in the RHS dolfinx_mpc.apply_lifting(b, [a], [bcs], mpc_vq) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) dolfinx.fem.petsc.set_bc(b, bcs) dolfinx.fem.petsc.apply_lifting(b_org, [a], [bcs]) b_org.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) dolfinx.fem.petsc.set_bc(b_org, bcs) # -- Verification def nest_matrix_norm(A): assert A.getType() == "nest" nrows, ncols = A.getNestSize() sub_A = [A.getNestSubMatrix(row, col) for row in range(nrows) for col in range(ncols)] return sum(map(lambda A_: A_.norm()**2 if A_ else 0.0, sub_A))**0.5 # -- Ensure monolithic and nest matrices are the same assert np.isclose(nest_matrix_norm(A_nest), A.norm())