Beispiel #1
0
    def __init__(self,
                 id_lst="",
                 from_date=datetime.date(1900, 1, 1),
                 to_date=datetime.date(2200, 12, 31),
                 do_update=False):
        if len(id_lst) > 0:
            print("Number of stock_id: %s" % len(id_lst))
            self.id_lst = id_lst
            self.from_date = from_date
            self.to_date = to_date
            from_date_str = from_date.strftime("%Y-%m-%d")
            to_date_str = to_date.strftime("%Y-%m-%d")
            sql_str = "WHERE stock_id in ("
            for id_str in self.id_lst:
                sql_str = sql_str + "" + str(id_str) + "" + ","
            sql_str = sql_str[:-1]
            sql_str = sql_str + ")"
            sql_str = sql_str + " AND date >= '" + from_date_str + "' AND date <= '" + to_date_str + "'"
            sql_str = sql_str + " ORDER BY stock_id, date"  # [IMPORTANT]
        else:
            from_date_str = from_date.strftime("%Y-%m-%d")
            to_date_str = to_date.strftime("%Y-%m-%d")
            sql_str = "WHERE date >= '" + from_date_str + "' AND date <= '" + to_date_str + "'"
            sql_str = sql_str + " ORDER BY stock_id, date"  # [IMPORTANT]

        self.df = self.crud.read_tbl_by_df(sql_str)
        self.id_lst = self.df["stock_id"].drop_duplicates().values
        self.id_json_lst = []
        for i in self.id_lst:
            tmp_json = {
                "stock_id":
                int(i),
                "date_len":
                len(self.df.loc[self.df["stock_id"] == int(i), ["date"]])
            }
            self.id_json_lst.append(tmp_json)

        if do_update:
            print("Update stock charts...")
            for cur_id in self.df["stock_id"].drop_duplicates().values:
                try:
                    start = time.time()
                    dcs.update_stock(str(cur_id))
                    scud.update_charts_stats(str(cur_id), True)
                    elapsed_time = time.time() - start
                    print("* Update time:{0}".format(elapsed_time) + "[sec]")
                except Exception as e:
                    print("Error occured >>>>> %s" % str(cur_id))
        # Tmp code ----------------------------------
        self.df = self.df.rename(columns={
            'end_price': 'close_price',
            'start_price': 'open_price'
        })
        # Tmp code ----------------------------------
        # self.set_sup_res_line(100)
        self.set_array()
Beispiel #2
0
	def get_predict_price_by_models(self, update_fl=False):
		# try:
		start = time.time()
		tolal_cols = ["stock_id", "date", "open_price", "high_price", "low_price", "close_price", "output"]
		target_cols = ["open_price", "high_price", "low_price", "close_price", "output"]
		s_lst = []

		for hs in self.hs_lst:
			if update_fl:
				dcs.update_stock(hs.stock_id)
				scud.update_charts_stats(hs.stock_id)
				hs.update_ii_obj(self.d)
			s_lst.append(hs.stock_id)

		for model in self.models:
			tmp_pred_lst = []
			r = model.input.shape.dims[1].value
			tmp_ii_obj = ii.investing_info(s_lst, self.d-timedelta(days=r*2), self.d-timedelta(days=1))
			for hs_id in range(len(self.hs_lst)):
				hs = self.hs_lst[hs_id]
				sid = hs.stock_id
				tmp_df = tmp_ii_obj.df.loc[tmp_ii_obj.df["stock_id"]==int(sid), target_cols]
				if len(tmp_df) < r:
					continue
				# tmp_df = tmp_ii_obj.df.loc[:, tolal_cols]
				tmp_np = np.array(df_to_array(tmp_df, target_cols))[:,len(tmp_df)-r:len(tmp_df)]
				max_lst = tmp_np.max(axis=1)
				for i in range(len(max_lst)):
					tmp_np[i, :] = tmp_np[i, :] / max_lst[i]
				tmp_x = tmp_np.reshape(len(target_cols), r, -1).T
				tmp_predict = model.predict(tmp_x)[0]
				# tmp_pred_lst.append(tmp_predict)
				for i in range(len(max_lst)):
					tmp_predict[i] = tmp_predict[i] * max_lst[i]

				tmp_predict_df = pd.Series(index=tolal_cols, dtype=str)
				tmp_predict_df["stock_id"] = sid
				tmp_predict_df["date"] = self.d
				for c in range(len(target_cols)):
					tmp_predict_df[target_cols[c]] = tmp_predict[c]
				self.predict_price_lst = self.predict_price_lst.append(tmp_predict_df,ignore_index=True)

		elapsed_time = time.time() - start
		print ("* get_predict_price_by_models time:{0}".format(elapsed_time) + "[sec]")

		return self.predict_price_lst
Beispiel #3
0
 def update_ii_obj(self, d=datetime.today(), updatedb=True):
     if updatedb:
         dcs.update_stock(self.stock_id)
         scud.update_charts_stats(self.stock_id)
     self.ii_obj = ii.investing_info([self.stock_id],
                                     d - timedelta(days=365), d, updatedb)
Beispiel #4
0
	def get_predict_price_by_models(self, update_fl=False):
		start = time.time()
		predict_lst     = []
		pre_predict_lst = []
		whole_id_lst    = []

		crud = CRUD_for_STOCK_DETAIL()

		for hs in self.hs_lst:
			if update_fl:
				dcs.update_stock(hs.stock_id)
				scud.update_charts_stats(hs.stock_id)
				hs.update_ii_obj(self.d)
			whole_id_lst.append(hs.stock_id)

		m=0
		for model in self.models:
			tmp_pred_lst = []
			r = model.input.shape.dims[1].value
			tmp_ii_obj = ii.investing_info(whole_id_lst, self.d-timedelta(days=r*2), self.d-timedelta(days=1))

			arr, id_lst = tmp_ii_obj.get_arr_over_range(r, True, prediction_mgr_for_hs_arr.target_cols)
			print(arr)
			tmp_predict_lst = model.predict(arr)

			tmp_arr = np.insert(arr, r, tmp_predict_lst, axis=1)[:, 1:r+1, :]
			tmp_pre_predict_lst = model.predict(tmp_arr)

			predict_lst     = np.append(predict_lst, tmp_predict_lst)
			pre_predict_lst = np.append(pre_predict_lst, tmp_pre_predict_lst)

			for id_n in range(len(id_lst)):
				try:
					cur_arr = arr[id_n,:,0:4]
					cur_arr = np.insert(cur_arr, len(cur_arr), tmp_predict_lst[id_n, 0:4], axis=0)
					cur_arr = np.insert(cur_arr, len(cur_arr), tmp_pre_predict_lst[id_n, 0:4], axis=0)
					cur_id = id_lst[id_n]
					fig = plt.figure()
					d_lst = tmp_ii_obj.df["date"].values[len(tmp_ii_obj.df["date"])-r:len(tmp_ii_obj.df["date"])]
					d_lst = np.append(d_lst, [d_lst.max() + timedelta(days=1), d_lst.max() + timedelta(days=2)])
					xdate = [x for x in d_lst]  # 日付
					
					ax = plt.subplot()
					ax.set_xlim(d_lst[0], d_lst[-1])
					ax.grid() 
					stock_name = crud.read_tbl_by_df("WHERE stock_id='%s'"%str(cur_id))["stock_name"].values[0]
					ax.set_title('Chart [%s]_%s'%(str(cur_id),stock_name))
					ohlc = np.vstack((date2num(xdate), cur_arr.T)).T
					candlestick_ohlc(ax, ohlc, width=0.7, colorup='r', colordown='b')

					if not(os.path.isdir("./pred_charts/%s"%str(cur_id))):
						os.makedirs("./pred_charts/%s"%str(cur_id))
					plt.savefig(os.path.join("./pred_charts/%s"%str(cur_id), '%s_[%s_%s]_%s.png'%(str(cur_id), str(d_lst[0]), str(d_lst[-1]), str(m))))#画像保存
					plt.close()
				except Exception as e:
					import traceback
					traceback.print_exc()

			m = m + 1

		predict_lst     = predict_lst.reshape(len(self.models), len(id_lst), -1)
		pre_predict_lst = pre_predict_lst.reshape(len(self.models), len(id_lst), -1)

		elapsed_time = time.time() - start
		print ("* get_predict_price_by_models time:{0}".format(elapsed_time) + "[sec]")

		return predict_lst, pre_predict_lst
Beispiel #5
0
def test_plot(s_lst, init_date, r):

	import numpy as np
	import pandas as pd
	import investing_info as ii 
	from keras.models import load_model
	from datetime import datetime, timedelta, date
	from mpl_finance import candlestick_ohlc
	from matplotlib.dates import date2num
	import matplotlib.pyplot as plt
	import os
	import download_charts_selenium as dcs
	import stock_charts_updateDB as scud

	for cur_id in s_lst:
		dcs.update_stock(cur_id)
		scud.update_charts_stats(cur_id)

	m1=load_model("./tmp_30/models/full/model.ep50.h5")
	m2=load_model("./tmp_30/models/Tosho1bu/model.ep50.h5")
	m3=load_model("/Volumes/StreamS06_2TB/project_a/tmp_90/models/Tosho1bu/model.ep29.h5")

	pred_price_lst = pd.DataFrame()
	# init_date = datetime(2018,8,5)
	for i in range(r):
		from_d=datetime(2010,1,1)
		to_d=init_date - timedelta(days=r-i)
		ii_obj = ii.investing_info(s_lst, from_d, to_d)
		# ii_obj = ii.get_ii_obj_by_stock_market("東証一部", from_d, to_d)
		# p = prediction_mgr_for_ii(ii_obj, [m1])
		p = prediction_mgr_for_ii(ii_obj, [m1, m2, m3])
		tmp_pred_price_lst = p.get_predict_price_by_models()
		pred_price_lst = pred_price_lst.append(tmp_pred_price_lst)

		id_lst = pred_price_lst["stock_id"].drop_duplicates()

	for cur_id in id_lst:
		full_df_tmp = pred_price_lst.loc[pred_price_lst["stock_id"]==cur_id, :]
		# print(full_df_tmp)

		fig = plt.figure()

		# For pred graph =======
		full_df_tmp = full_df_tmp.groupby("date").mean().sort_values(by=["date"], ascending=True)
		date_lst1 = pred_price_lst["date"].drop_duplicates()
		xdate1 = [x for x in date_lst1]  # 日付
		ax1 = plt.subplot(211)
		df_tmp1 = full_df_tmp.loc[:, ['open_price', 'high_price','low_price', 'close_price']]
		ax1.set_xlim(date_lst1.values[0], date_lst1.values[-1])  # x軸の範囲
		ax1.grid()  # グリッド表示
		ax1.set_title('Predicted_plot')
		ochl1 = np.vstack((date2num(xdate1), df_tmp1.values.T)).T
		candlestick_ohlc(ax1, ochl1, width=0.7, colorup='g', colordown='r')
		# fig.autofmt_xdate()  # x軸のオートフォーマット

		# plt.savefig(os.path.join("./pred_real_charts", str(cur_id) + '_pred.png'))#画像保存


		# fig2 = plt.figure()

		# For real graph =======
		tmp_ii_obj = ii.investing_info([cur_id], date_lst1.values[0], date_lst1.values[-1])
		date_lst2 = tmp_ii_obj.df["date"].drop_duplicates()
		xdate2 = [x for x in date_lst2]  # 日付
		ax2 = plt.subplot(212)
		df_tmp2 = tmp_ii_obj.df.loc[:, ['open_price', 'high_price','low_price', 'close_price']]
		ax2.set_xlim(tmp_ii_obj.df.loc[:,"date"]. values[0], tmp_ii_obj.df.loc[:,"date"]. values[-1])  # x軸の範囲
		ax2.grid()  # グリッド表示
		ax2.set_title('Real_plot')
		ochl2 = np.vstack((date2num(xdate2), df_tmp2.values.T)).T
		candlestick_ohlc(ax2, ochl2, width=0.7, colorup='g', colordown='r')
		# fig.autofmt_xdate()  # x軸のオートフォーマット
		fig.tight_layout() # タイトルとラベルが被るのを解消
		
		plt.savefig(os.path.join("./pred_real_charts", str(cur_id) + '_real.png'))#画像保存