Beispiel #1
0
def train_yolo_detector(task_id):
    """
    :param task_id:
    :return:
    """
    start = TEvent.objects.get(pk=task_id)
    if celery_40_bug_hack(start):
        return 0
    start.task_id = train_yolo_detector.request.id
    start.started = True
    start.operation = train_yolo_detector.name
    start.save()
    start_time = time.time()
    args = json.loads(start.arguments_json)
    labels = set(args['labels']) if 'labels' in args else set()
    object_names = set(args['object_names']) if 'object_names' in args else set()
    detector = CustomDetector.objects.get(pk=args['detector_pk'])
    create_detector_folders(detector)
    args['root_dir'] = "{}/models/{}/".format(settings.MEDIA_ROOT,detector.pk)
    class_distribution, class_names, rboxes, rboxes_set, frames, i_class_names = create_detector_dataset(object_names,labels)
    images, boxes = [], []
    path_to_f = {}
    for k,f in frames.iteritems():
        path = "{}/{}/frames/{}.jpg".format(settings.MEDIA_ROOT,f.video_id,f.frame_index)
        path_to_f[path] = f
        images.append(path)
        boxes.append(rboxes[k])
        # print k,rboxes[k]
    with open("{}/input.json".format(args['root_dir']),'w') as input_data:
        json.dump({'boxes':boxes,'images':images,'args':args,'class_names':class_names.items()},input_data)
    detector.boxes_count = sum([len(k) for k in boxes])
    detector.frames_count = len(images)
    detector.classes_count = len(class_names)
    detector.save()
    train_task = trainer.YOLOTrainer(boxes=boxes,images=images,class_names=i_class_names,args=args)
    train_task.train()
    detector.phase_1_log = file("{}/phase_1.log".format(args['root_dir']))
    detector.phase_2_log = file("{}/phase_2.log".format(args['root_dir']))
    detector.class_distribution = json.dumps(class_distribution.items())
    detector.class_names = json.dumps(class_names.items())
    detector.save()
    results = train_task.predict()
    for path, box_class, score, top, left, bottom, right in results:
        r = Region()
        r.region_type = r.DETECTION
        r.confidence = int(100.0 * score)
        r.object_name = "YOLO_{}_{}".format(detector.pk,box_class)
        r.y = top
        r.x = left
        r.w = right - left
        r.h = bottom - top
        r.frame_id = path_to_f[path].pk
        r.video_id = path_to_f[path].video_id
        r.save()
    start.completed = True
    start.seconds = time.time() - start_time
    start.save()
    return 0
Beispiel #2
0
def test_train_yolo():
    """
    :return:
    """
    setup_django()
    from dvaapp.models import TEvent, CustomDetector
    from dvaapp.tasks import train_yolo_detector
    from django.conf import settings
    args = {}
    detector = CustomDetector()
    detector.save()
    args['detector_pk'] = detector.pk
    args['object_names'] = [
        "red_buoy", "green_buoy", "yellow_buoy", "path_marker", "start_gate",
        "channel"
    ]
    args['root_dir'] = "{}/models/{}/".format(settings.MEDIA_ROOT, detector.pk)
    train_yolo_detector(
        TEvent.objects.create(arguments_json=json.dumps(args)).pk)
Beispiel #3
0
def train_yolo(start_pk):
    """
    Train a yolo model specified in a TaskEvent.
    This is necessary to ensure that the Tensorflow process exits and releases the allocated GPU memory.
    :param start_pk: TEvent PK with information about lauching the training task
    :return:
    """
    setup_django()
    from django.conf import settings
    from dvaapp.models import Region, Frame, CustomDetector, TEvent
    from dvaapp.shared import create_detector_folders, create_detector_dataset
    from dvalib.yolo import trainer
    start = TEvent.objects.get(pk=start_pk)
    args = json.loads(start.arguments_json)
    labels = set(args['labels']) if 'labels' in args else set()
    object_names = set(args['object_names']) if 'object_names' in args else set()
    detector = CustomDetector.objects.get(pk=args['detector_pk'])
    create_detector_folders(detector)
    args['root_dir'] = "{}/models/{}/".format(settings.MEDIA_ROOT,detector.pk)
    class_distribution, class_names, rboxes, rboxes_set, frames, i_class_names = create_detector_dataset(object_names,labels)
    images, boxes = [], []
    path_to_f = {}
    for k,f in frames.iteritems():
        path = "{}/{}/frames/{}.jpg".format(settings.MEDIA_ROOT,f.video_id,f.frame_index)
        path_to_f[path] = f
        images.append(path)
        boxes.append(rboxes[k])
        # print k,rboxes[k]
    with open("{}/input.json".format(args['root_dir']),'w') as input_data:
        json.dump({'boxes':boxes,
                   'images':images,
                   'args':args,
                   'class_names':class_names.items(),
                   'class_distribution':class_distribution.items()},
                  input_data)
    detector.boxes_count = sum([len(k) for k in boxes])
    detector.frames_count = len(images)
    detector.classes_count = len(class_names)
    detector.save()
    train_task = trainer.YOLOTrainer(boxes=boxes,images=images,class_names=i_class_names,args=args)
    train_task.train()
    detector.phase_1_log = file("{}/phase_1.log".format(args['root_dir'])).read()
    detector.phase_2_log = file("{}/phase_2.log".format(args['root_dir'])).read()
    detector.class_distribution = json.dumps(class_distribution.items())
    detector.class_names = json.dumps(class_names.items())
    detector.trained = True
    detector.save()
    results = train_task.predict()
    bulk_regions = []
    for path, box_class, score, top, left, bottom, right in results:
        r = Region()
        r.region_type = r.ANNOTATION
        r.confidence = int(100.0 * score)
        r.object_name = "YOLO_{}_{}".format(detector.pk,box_class)
        r.y = top
        r.x = left
        r.w = right - left
        r.h = bottom - top
        r.frame_id = path_to_f[path].pk
        r.video_id = path_to_f[path].video_id
        bulk_regions.append(r)
    Region.objects.bulk_create(bulk_regions,batch_size=1000)
    folder_name = "{}/models/{}".format(settings.MEDIA_ROOT,detector.pk)
    file_name = '{}/exports/{}.dva_detector.zip'.format(settings.MEDIA_ROOT,detector.pk)
    zipper = subprocess.Popen(['zip', file_name, '-r', '.'],cwd=folder_name)
    zipper.wait()
    return 0