def train_yolo_detector(task_id): """ :param task_id: :return: """ start = TEvent.objects.get(pk=task_id) if celery_40_bug_hack(start): return 0 start.task_id = train_yolo_detector.request.id start.started = True start.operation = train_yolo_detector.name start.save() start_time = time.time() args = json.loads(start.arguments_json) labels = set(args['labels']) if 'labels' in args else set() object_names = set(args['object_names']) if 'object_names' in args else set() detector = CustomDetector.objects.get(pk=args['detector_pk']) create_detector_folders(detector) args['root_dir'] = "{}/models/{}/".format(settings.MEDIA_ROOT,detector.pk) class_distribution, class_names, rboxes, rboxes_set, frames, i_class_names = create_detector_dataset(object_names,labels) images, boxes = [], [] path_to_f = {} for k,f in frames.iteritems(): path = "{}/{}/frames/{}.jpg".format(settings.MEDIA_ROOT,f.video_id,f.frame_index) path_to_f[path] = f images.append(path) boxes.append(rboxes[k]) # print k,rboxes[k] with open("{}/input.json".format(args['root_dir']),'w') as input_data: json.dump({'boxes':boxes,'images':images,'args':args,'class_names':class_names.items()},input_data) detector.boxes_count = sum([len(k) for k in boxes]) detector.frames_count = len(images) detector.classes_count = len(class_names) detector.save() train_task = trainer.YOLOTrainer(boxes=boxes,images=images,class_names=i_class_names,args=args) train_task.train() detector.phase_1_log = file("{}/phase_1.log".format(args['root_dir'])) detector.phase_2_log = file("{}/phase_2.log".format(args['root_dir'])) detector.class_distribution = json.dumps(class_distribution.items()) detector.class_names = json.dumps(class_names.items()) detector.save() results = train_task.predict() for path, box_class, score, top, left, bottom, right in results: r = Region() r.region_type = r.DETECTION r.confidence = int(100.0 * score) r.object_name = "YOLO_{}_{}".format(detector.pk,box_class) r.y = top r.x = left r.w = right - left r.h = bottom - top r.frame_id = path_to_f[path].pk r.video_id = path_to_f[path].video_id r.save() start.completed = True start.seconds = time.time() - start_time start.save() return 0
def test_train_yolo(): """ :return: """ setup_django() from dvaapp.models import TEvent, CustomDetector from dvaapp.tasks import train_yolo_detector from django.conf import settings args = {} detector = CustomDetector() detector.save() args['detector_pk'] = detector.pk args['object_names'] = [ "red_buoy", "green_buoy", "yellow_buoy", "path_marker", "start_gate", "channel" ] args['root_dir'] = "{}/models/{}/".format(settings.MEDIA_ROOT, detector.pk) train_yolo_detector( TEvent.objects.create(arguments_json=json.dumps(args)).pk)
def train_yolo(start_pk): """ Train a yolo model specified in a TaskEvent. This is necessary to ensure that the Tensorflow process exits and releases the allocated GPU memory. :param start_pk: TEvent PK with information about lauching the training task :return: """ setup_django() from django.conf import settings from dvaapp.models import Region, Frame, CustomDetector, TEvent from dvaapp.shared import create_detector_folders, create_detector_dataset from dvalib.yolo import trainer start = TEvent.objects.get(pk=start_pk) args = json.loads(start.arguments_json) labels = set(args['labels']) if 'labels' in args else set() object_names = set(args['object_names']) if 'object_names' in args else set() detector = CustomDetector.objects.get(pk=args['detector_pk']) create_detector_folders(detector) args['root_dir'] = "{}/models/{}/".format(settings.MEDIA_ROOT,detector.pk) class_distribution, class_names, rboxes, rboxes_set, frames, i_class_names = create_detector_dataset(object_names,labels) images, boxes = [], [] path_to_f = {} for k,f in frames.iteritems(): path = "{}/{}/frames/{}.jpg".format(settings.MEDIA_ROOT,f.video_id,f.frame_index) path_to_f[path] = f images.append(path) boxes.append(rboxes[k]) # print k,rboxes[k] with open("{}/input.json".format(args['root_dir']),'w') as input_data: json.dump({'boxes':boxes, 'images':images, 'args':args, 'class_names':class_names.items(), 'class_distribution':class_distribution.items()}, input_data) detector.boxes_count = sum([len(k) for k in boxes]) detector.frames_count = len(images) detector.classes_count = len(class_names) detector.save() train_task = trainer.YOLOTrainer(boxes=boxes,images=images,class_names=i_class_names,args=args) train_task.train() detector.phase_1_log = file("{}/phase_1.log".format(args['root_dir'])).read() detector.phase_2_log = file("{}/phase_2.log".format(args['root_dir'])).read() detector.class_distribution = json.dumps(class_distribution.items()) detector.class_names = json.dumps(class_names.items()) detector.trained = True detector.save() results = train_task.predict() bulk_regions = [] for path, box_class, score, top, left, bottom, right in results: r = Region() r.region_type = r.ANNOTATION r.confidence = int(100.0 * score) r.object_name = "YOLO_{}_{}".format(detector.pk,box_class) r.y = top r.x = left r.w = right - left r.h = bottom - top r.frame_id = path_to_f[path].pk r.video_id = path_to_f[path].video_id bulk_regions.append(r) Region.objects.bulk_create(bulk_regions,batch_size=1000) folder_name = "{}/models/{}".format(settings.MEDIA_ROOT,detector.pk) file_name = '{}/exports/{}.dva_detector.zip'.format(settings.MEDIA_ROOT,detector.pk) zipper = subprocess.Popen(['zip', file_name, '-r', '.'],cwd=folder_name) zipper.wait() return 0