def analysicQuantDataOnly(start: datetime, end: datetime):
    souces = ZZ500DataSource(start, end)
    model = KDJMovementEngineModel()

    create = False
    engine = None
    if create:
        engine = CoreEngine.create(dirName,
                                   model,
                                   souces,
                                   build_quant_data_only=True,
                                   min_size=200)
    else:
        engine = CoreEngine.load(dirName, model)
        engine.buildPredictModel(useSVM=False)

    pass
Beispiel #2
0
        def generatePredictOrder(self, engine: CoreEngine, predict: PredictData,debugPrams:{}=None) -> PredictOrder:

            if debugPrams is None:
                debugPrams = {}
            quantData = engine.queryQuantData(predict.dimen)
            code = predict.collectData.occurBars[-1].symbol
            name = self.sw.getSw2Name(code)
            order = PredictOrder(dimen=predict.dimen, code=code, name=name)
            start_price = engine.getEngineModel().getYBasePrice(predict.collectData)

            _min, _max = quantData.getSellFloatEncoder().parseEncode(quantData.sellRange[0].encode)
            order.suggestSellPrice = start_price * (1 + (_min +  _max) / 2 / 100)
            _min, _max = quantData.getBuyFloatEncoder().parseEncode(quantData.buyRange[0].encode)
            order.suggestBuyPrice = start_price * (1 + (_min +  _max) / 2 / 100)

            order.power_rate = quantData.getPowerRate();

            ##for backTest
            self.checkIfBuyPrice(order,predict.collectData.occurBars[-1].close_price,debugPrams)
            return order
Beispiel #3
0
        def generatePredictOrder(self, engine: CoreEngine, predict: PredictData,debugPrams:{}=None) -> PredictOrder:

            if debugPrams is None:
                debugPrams = {}

            code = predict.collectData.occurBars[-1].symbol
            name = self.sw.getSw2Name(code)
            order = PredictOrder(dimen=predict.dimen, code=code, name=name)
            predict_sell_pct = predict.getPredictSellPct(engine.getEngineModel())
            predict_buy_pct = predict.getPredictBuyPct(engine.getEngineModel())
            start_price = engine.getEngineModel().getYBasePrice(predict.collectData)
            order.suggestSellPrice = start_price * (1 + predict_sell_pct / 100)
            order.suggestBuyPrice = start_price * (1 + predict_buy_pct / 100)
            order.power_rate = engine.queryQuantData(predict.dimen).getPowerRate()

            ##for backTest
            occurBar: BarData = predict.collectData.occurBars[-2]
            skipBar: BarData = predict.collectData.occurBars[-1]
            buy_price = skipBar.close_price
            predict_sell_pct = 100 * (order.suggestSellPrice - start_price) / start_price
            predict_buy_pct = 100 * (order.suggestBuyPrice - start_price) / start_price
            buy_point_pct = 100 * (buy_price - occurBar.close_price) / occurBar.close_price  ##买入的价格

            abilityData = engine.queryPredictAbilityData(predict.dimen)
            quantData = engine.queryQuantData(predict.dimen)
            delta = abs(quantData.sellCenterPct) - abs(quantData.buyCenterPct)
            if abs(delta) < 0.05:
                # 多空力量差不多
                power = 0
            if delta > 0:
                # 适合做多
                power= (quantData.sellCenterPct + quantData.buyCenterPct) / quantData.sellCenterPct
            else:
                power = - (quantData.sellCenterPct + quantData.buyCenterPct) / quantData.buyCenterPct

            extraCondition = True
            quant_power = debugPrams.get("quant_power")
            if not quant_power is None:
                extraCondition = extraCondition and predict.quantData.getPowerRate() >= quant_power

            predict_buy_pct_param = debugPrams.get("predict_buy_pct")
            if not predict_buy_pct_param is None:
                extraCondition = extraCondition and predict_buy_pct >= predict_buy_pct_param

            if extraCondition and predict_sell_pct - buy_point_pct > 1 \
                and abilityData.trainData.biasSellLoss < 10:
                order.status = PredictOrderStatus.HOLD
                order.buyPrice = buy_price
            else:
                order.status = PredictOrderStatus.STOP
            return order
Beispiel #4
0
    def build(self, engine: CoreEngine, sampleData: Sequence['CollectData'],
              quantData: QuantData):

        start = timeit.default_timer()
        self.quantData = quantData
        trainDataList = engine.getEngineModel().generateSampleData(
            engine, sampleData)
        size = len(trainDataList)
        engine.printLog(
            f"build PredictModel:dime={self.dimen}, sample size:{size} use SVM ={self.useSVM}",
            True)
        engine.printLog(f"   history quantdata: {self.quantData}")

        ##建立特征值
        x, y_sell_1, y_buy_1, y_sell_2, y_buy_2 = self.__generateFeature(
            trainDataList)
        self.labelListSell1 = np.sort(np.unique(y_sell_1))
        self.labelListSell2 = np.sort(np.unique(y_sell_2))
        self.labelListBuy1 = np.sort(np.unique(y_buy_1))
        self.labelListBuy2 = np.sort(np.unique(y_buy_2))
        engine.printLog(f"   labelListSell1: {self.labelListSell1}")
        engine.printLog(f"   labelListSell2: {self.labelListSell2}")
        engine.printLog(f"   labelListBuy1: {self.labelListBuy1}")
        engine.printLog(f"   labelListBuy2: {self.labelListBuy2}")

        self.classifierSell_1 = self.__createClassifier(x, y_sell_1)
        self.classifierSell_2 = self.__createClassifier(x, y_sell_2)
        self.classifierBuy_1 = self.__createClassifier(x, y_buy_1)
        self.classifierBuy_2 = self.__createClassifier(x, y_buy_2)

        elapsed = (timeit.default_timer() - start)
        engine.printLog(
            f"build PredictModel finished! elapsed = %.3fs" % (elapsed), True)
        pass
            return x

        def percent_to_one(x):
            return int(x * 100) / 1000.0

        data = []
        data.append(percent_to_one(buy_pct))
        data.append(percent_to_one(sell_pct))
        data.append(set_0_between_100(kdj[0]) / 100)
        data.append(set_0_between_100(kdj[2]) / 100)
        return data


if __name__ == "__main__":

    dirName = "models/sw_sample_model_analysis"
    trainDataSouce = SWDataSource(start=datetime(2014, 2, 1),
                                  end=datetime(2019, 9, 1))
    testDataSouce = SWDataSource(datetime(2019, 9, 1), datetime(2020, 9, 1))

    model = EngineModel2KAlgo2()
    #engine = CoreEngine.create(dirName,model,trainDataSouce,limit_dimen_size=99999999)
    engine = CoreEngine.load(dirName, model)
    runner = CoreEngineRunner(engine)
    strategy = MyStrategy()
    pdData = runner.backtest(testDataSouce, strategy, min_deal_count=15)

    writer = pd.ExcelWriter('models\output.xlsx')
    pdData.to_excel(writer, sheet_name="data", index=False)
    writer.save()
    writer.close()