Beispiel #1
0
from fatiando import gridder, utils
from fatiando.vis import mpl

# Generate random points
x, y = gridder.scatter((-2, 2, -2, 2), n=300, seed=1)
# And calculate 2D Gaussians on these points as sample data
def data(x, y):
    return (utils.gaussian2d(x, y, -0.6, -1)
            - utils.gaussian2d(x, y, 1.5, 1.5))


d = data(x, y)

# Extract a profile along the diagonal
p1, p2 = [-1.5, 0], [1.5, 1.5]
xp, yp, distance, dp = gridder.profile(x, y, d, p1, p2, 100)
dp_true = data(xp, yp)

mpl.figure()
mpl.subplot(2, 1, 2)
mpl.title("Irregular grid")
mpl.plot(xp, yp, '-k', label='Profile', linewidth=2)
mpl.contourf(x, y, d, (100, 100), 50, interp=True)
mpl.colorbar(orientation='horizontal')
mpl.legend(loc='lower right')
mpl.subplot(2, 1, 1)
mpl.title('Profile')
mpl.plot(distance, dp, '.b', label='Extracted')
mpl.plot(distance, dp_true, '-k', label='True')
mpl.xlim(distance.min(), distance.max())
mpl.legend(loc='lower right')
Beispiel #2
0
def slice_mesh(x, y, mesh, label, p1, p2, ax=None, interp=True, **kwargs):
    """
    Get vertical xy section of the mesh at max/2 and plot it

    Parameters:

    * mesh
        Fatiando mesh type
    * scaled
        Txt here
    * label
        Txt here
        Txt here
    * markerMax
        Txt here
    """

    if ax == None:
        fig = plt.subplots()
        ax = plt.gca()

    Xaxis = []
    for key, value in kwargs.items():
        if key == 'Xaxis':
            Xaxis = value

    image = mesh.props[label]
    toslice = np.reshape(image, [mesh.shape[0], mesh.shape[1] * mesh.shape[2]])
    depths = mesh.get_zs()[:-1]
    x_resolution = 1000

    Z = []
    X = []
    Y = []
    DIST = []
    IMG = []
    z = 0 * np.ones_like(x)
    interp = True
    for i, depth in enumerate(depths - z[0]):  # Loop for RII extremas
        u_layer = toslice[
            i, :]  # analysing extrema layers by layers from top to bottom

        if interp == True:
            xx, yy, distance, u_layer_p1p2 = gridder.profile(
                x, y, u_layer, p1, p2, x_resolution)
        else:
            xx, yy, distance, u_layer_p1p2, u_layer_p1p2_smooth = profile_noInter(
                x, y, u_layer, p1, p2, x_resolution)

        zz = depth * np.ones(len(u_layer_p1p2))
        Z.append(zz)
        X.append(xx)
        Y.append(yy)
        DIST.append(distance)
        IMG.append(u_layer_p1p2)

    if 'dist' in Xaxis:
        xaxis = DIST
    else:
        xaxis = X

    cmap = ax.pcolormesh(np.array(xaxis), np.array(Z), np.array(IMG))

    # if 'upwc' in label:
    #     plt.gca().invert_yaxis()

    # ax.set_ylim(np.max(Z), np.min(Z))
    # ax.set_xlim(np.max(xaxis), np.min(xaxis))
    ax.set_xlabel('x (m)')
    ax.set_ylabel('z (m)')
    ax.set_title(label)
    ax.set_aspect('equal')

    return plt, cmap
Beispiel #3
0
def plot_line(x, y, data, p1, p2, ax=None, interp=True, **kwargs):

    Xaxis = []
    Vminmax = []
    smooth_type = False
    showfig = False
    vmin = min(data)
    vmax = max(data)
    limx = None
    limy = None
    x_resolution = None

    for key, value in kwargs.items():
        if key == 'Xaxis':
            Xaxis = value
        if key == 'smooth':
            smooth_type = value
        if key == 'showfig':
            showfig = value
        if key == 'Vminmax':
            Vminmax = value
            vmin = Vminmax[0]
            vmax = Vminmax[1]
        if key == 'limx':
            limx = value
        if key == 'limy':
            limy = value
        if key == 'x_resolution':
            x_resolution = value
    # Extract a profile between points 1 and 2
    if interp == False:
        xx, yy, distance, profile, vp_smooth_dict = dEXP.profile_noInter(
            x, y, data, p1, p2, size=x_resolution, showfig=showfig)
        # xx, yy, distance, profile, profile_smooth = dEXP.profile_extra(x, y, data, p1, p2, 1000)
    else:
        xx, yy, distance, profile = gridder.profile(x, y, data, p1, p2, 1000,
                                                    'nearest')

    if Xaxis is 'dist':
        xaxis = distance
    elif Xaxis is 'y':
        xaxis = xx
    else:
        xaxis = yy

    if smooth_type is not False:
        if smooth_type == True:
            profile = vp_smooth_dict['Lowpass']
        else:
            profile = vp_smooth_dict[smooth_type]

    # Plot the profile and the original map data
    plt.figure()
    ax = ax or plt.gca()
    plt.subplot(1, 2, 1)
    # plt.title(strname + '_data' + str(ZZ), fontsize=15)
    plt.plot(xaxis, profile, '.k')
    # plt.xlim(xaxis.min(), xaxis.max())
    plt.grid()

    if Xaxis is 'dist':
        plt.xlabel('distance (m)')
    elif Xaxis is 'y':
        plt.xlabel('x (m)')
    else:
        plt.xlabel('y (m)')

    plt.ylabel('voltage (V)')

    plt.subplot(1, 2, 2)
    plt.title("Original data")
    plt.plot(xx, yy, '-k', label='Profile', linewidth=2)
    # scale = np.abs([data.min(), data.max()]).max()
    # plt.tricontourf(x, y, data, 50, cmap='RdBu_r', vmin=min(data), vmax=max(data))
    plt.scatter(x, y, c=data, cmap='RdBu_r', vmin=vmin, vmax=vmax)
    plt.colorbar(orientation='vertical', aspect=50)
    plt.legend(loc='lower right')
    plt.xlabel('x (m)')
    plt.ylabel('y (m)')

    plt.axis('square')

    if limx is not None:
        plt.xlim(limx[0], limx[1])
    if limx is not None:
        plt.ylim(limy[0], limy[1])

        # plt.tight_layout()

    for key, value in kwargs.items():
        # print("{0} = {1}".format(key, value))

        if key == 'title':
            plt.title(value, fontsize=15)
        if key == 'suptitle':
            plt.suptitle(value, fontsize=15)
        if key == 'savefig':
            if value == True:
                # plt.savefig(pathFig+ strname + '_data' + str(ZZ) + '.png')
                plt.savefig('fig2d.png', r=400)

    plt.show()

    return xx, yy, distance, profile, ax, plt
Beispiel #4
0
# remove B return electrode effects
B = [-104.16666666666667, -104.16666666666667, 0]
gz_cor = dEXP.cor_field_B(x, y, z, gz, B, rho=100)

gz_cor = gz
xp, yp, gz = gridder.interp(x, y, gz, shape)
xp, yp, gz_cor = gridder.interp(x, y, gz_cor, shape)
zp = 0

# # ------------------------------- Export for CWT analysis

# # Extract a profile between points 1 and 2
p1, p2 = [min(xp), 0], [max(xp), 0]
# p1, p2 = [0, min(xp)], [0, max(xp)]
xx, yy, distance, profile = gridder.profile(xp, yp, gz, p1, p2, 1000)
# xx, yy, distance, profile_cor = gridder.profile(xp, yp, gz_cor, p1, p2, 1000)

# ------------------------------- Export for CWT analysis

## Extract a profile between points 1 and 2
#p1, p2 = [0.1, 0.1], [12000, 0.1]
#xx, yy, distance, profile = gridder.profile(xp, yp, gz, p1, p2, 1000)

# Plot the profile and the original map data
plt.figure()
plt.subplot(2, 1, 1)
#plt.title(strname + '_ztop' + str(za) +'_zbot'+ str(zb), fontsize=15)
plt.plot(distance, profile, '.k')
# plt.plot(distance, profile_cor, '.r')
plt.xlim(distance.min(), distance.max())
Beispiel #5
0
    # remove B return electrode effects using :mod:`uEXP.cor_field_B` using a resistivity of 1 Ohm.m

    U_cor = uEXP.cor_field_B(xyzs[:-3, 0],
                             xyzs[:-3, 1],
                             xyzs[:-3, 2],
                             uT_elecs,
                             Bpos,
                             rho=model_prop['SoilR'])

    #%%
    # Compare the voltage seen by the surface electrode using 2d plot over a line
    p1_elecs = [min(xyzs[:-3, 0]), (max(xyzs[:-3, 0]) + min(xyzs[:-3, 0])) / 2]
    p2_elecs = [max(xyzs[:-3, 0]), (max(xyzs[:-3, 0]) + min(xyzs[:-3, 0])) / 2]

    xx, yy, distance, profile = gridder.profile(xyzs[:-3, 0], xyzs[:-3, 1],
                                                uT_elecs, p1_elecs, p2_elecs,
                                                1000)
    plt.figure()
    # plt.title(strname + '_data' + str(ZZ), fontsize=15)
    plt.plot(xx, profile, '.k', label='Raw')

    xx, yy, distance, profile = gridder.profile(xyzs[:-3, 0], xyzs[:-3,
                                                                   1], U_cor,
                                                p1_elecs, p2_elecs, 1000)
    plt.plot(xx, profile, '.r', label='Corrected')
    plt.grid()
    plt.xlabel('x (m)')
    plt.ylabel('u (V)')

    plt.legend()
Beispiel #6
0
# Generate random points
x, y = gridder.scatter((-2, 2, -2, 2), n=300, seed=1)


# And calculate 2D Gaussians on these points as sample data
def data(x, y):
    return (utils.gaussian2d(x, y, -0.6, -1) -
            utils.gaussian2d(x, y, 1.5, 1.5))


d = data(x, y)

# Extract a profile along the diagonal
p1, p2 = [-1.5, 0], [1.5, 1.5]
xp, yp, distance, dp = gridder.profile(x, y, d, p1, p2, 100)
dp_true = data(xp, yp)

mpl.figure()
mpl.subplot(2, 1, 2)
mpl.title("Irregular grid")
mpl.plot(xp, yp, '-k', label='Profile', linewidth=2)
mpl.contourf(x, y, d, (100, 100), 50, interp=True)
mpl.colorbar(orientation='horizontal')
mpl.legend(loc='lower right')
mpl.subplot(2, 1, 1)
mpl.title('Profile')
mpl.plot(distance, dp, '.b', label='Extracted')
mpl.plot(distance, dp_true, '-k', label='True')
mpl.xlim(distance.min(), distance.max())
mpl.legend(loc='lower right')
Beispiel #7
0
The function :func:`fatiando.gridder.profile` can be used to extract a profile
of data from a map. It interpolates the data onto the profile points so you can
specify the profile in any direction and use irregular point data as input.
"""
import matplotlib.pyplot as plt
import numpy as np
from fatiando import gridder, utils

# Generate random points
x, y = gridder.scatter((-2, 2, -2, 2), n=1000, seed=1)
# And calculate 2D Gaussians on these points as sample data
data = 2*utils.gaussian2d(x, y, -0.6, -1) - utils.gaussian2d(x, y, 1.5, 1.5)

# Extract a profile between points 1 and 2
p1, p2 = [-1.5, -0.5], [1.5, 1.5]
xp, yp, distance, profile = gridder.profile(x, y, data, p1, p2, 100)

# Plot the profile and the original map data
plt.figure()
plt.subplot(2, 1, 1)
plt.title('Extracted profile points')
plt.plot(distance, profile, '.k')
plt.xlim(distance.min(), distance.max())
plt.grid()
plt.subplot(2, 1, 2)
plt.title("Original data")
plt.plot(xp, yp, '-k', label='Profile', linewidth=2)
scale = np.abs([data.min(), data.max()]).max()
plt.tricontourf(x, y, data, 50, cmap='RdBu_r', vmin=-scale, vmax=scale)
plt.colorbar(orientation='horizontal', aspect=50)
plt.legend(loc='lower right')
Beispiel #8
0
The function :func:`fatiando.gridder.profile` can be used to extract a profile
of data from a map. It interpolates the data onto the profile points so you can
specify the profile in any direction and use irregular point data as input.
"""
import matplotlib.pyplot as plt
import numpy as np
from fatiando import gridder, utils

# Generate random points
x, y = gridder.scatter((-2, 2, -2, 2), n=1000, seed=1)
# And calculate 2D Gaussians on these points as sample data
data = 2 * utils.gaussian2d(x, y, -0.6, -1) - utils.gaussian2d(x, y, 1.5, 1.5)

# Extract a profile between points 1 and 2
p1, p2 = [-1.5, -0.5], [1.5, 1.5]
xp, yp, distance, profile = gridder.profile(x, y, data, p1, p2, 100)

# Plot the profile and the original map data
plt.figure()
plt.subplot(2, 1, 1)
plt.title('Extracted profile points')
plt.plot(distance, profile, '.k')
plt.xlim(distance.min(), distance.max())
plt.grid()
plt.subplot(2, 1, 2)
plt.title("Original data")
plt.plot(xp, yp, '-k', label='Profile', linewidth=2)
scale = np.abs([data.min(), data.max()]).max()
plt.tricontourf(x, y, data, 50, cmap='RdBu_r', vmin=-scale, vmax=scale)
plt.colorbar(orientation='horizontal', aspect=50)
plt.legend(loc='lower right')