def _finite_field_ext_pari_(self):
        """
        Return a FiniteField_ext_pari isomorphic to self with the same
        defining polynomial.

        This method will vanish eventually because that implementation of
        finite fields will be deprecated.

        EXAMPLES::

            sage: k.<a> = GF(2^20)
            sage: kP = k._finite_field_ext_pari_()
            sage: kP
            Finite Field in a of size 2^20
            sage: type(kP)
            <class 'sage.rings.finite_rings.finite_field_ext_pari.FiniteField_ext_pari_with_category'>
        """
        f = self.polynomial()
        return FiniteField_ext_pari(self.order(), self.variable_name(), f)
Beispiel #2
0
    def create_object(self,
                      version,
                      key,
                      check_irreducible=True,
                      elem_cache=None,
                      names=None,
                      **kwds):
        """
        EXAMPLES::
        
            sage: K = GF(19)
            sage: TestSuite(K).run()
        """
        # IMPORTANT!  If you add a new class to the list of classes
        # that get cached by this factor object, then you *must* add
        # the following method to that class in order to fully support
        # pickling:
        #
        #     def __reduce__(self):   # and include good doctests, please!
        #         return self._factory_data[0].reduce_data(self)
        #
        # This is not in the base class for finite fields, since some finite
        # fields need not be created using this factory object, e.g., residue
        # class fields.

        if len(key) == 5:
            # for backward compatibility of pickles (see trac 10975).
            order, name, modulus, impl, _ = key
            p, n = arith.factor(order)[0]
            proof = True
        else:
            order, name, modulus, impl, _, p, n, proof = key

        if isinstance(modulus, str) and modulus.startswith("random"):
            modulus = "random"

        if elem_cache is None:
            elem_cache = order < 500

        if n == 1 and (impl is None or impl == 'modn'):
            from finite_field_prime_modn import FiniteField_prime_modn
            # Using a check option here is probably a worthwhile
            # compromise since this constructor is simple and used a
            # huge amount.
            K = FiniteField_prime_modn(order, check=False, **kwds)
        else:
            # We have to do this with block so that the finite field
            # constructors below will use the proof flag that was
            # passed in when checking for primality, factoring, etc.
            # Otherwise, we would have to complicate all of their
            # constructors with check options (like above).
            from sage.structure.proof.all import WithProof
            with WithProof('arithmetic', proof):
                if check_irreducible and polynomial_element.is_Polynomial(
                        modulus):
                    if modulus.parent().base_ring().characteristic() == 0:
                        modulus = modulus.change_ring(FiniteField(p))
                    if not modulus.is_irreducible():
                        raise ValueError(
                            "finite field modulus must be irreducible but it is not."
                        )
                    if modulus.degree() != n:
                        raise ValueError(
                            "The degree of the modulus does not correspond to the cardinality of the field."
                        )
                if name is None:
                    raise TypeError("you must specify the generator name.")
                if order < zech_log_bound:
                    # DO *NOT* use for prime subfield, since that would lead to
                    # a circular reference in the call to ParentWithGens in the
                    # __init__ method.
                    K = FiniteField_givaro(order,
                                           name,
                                           modulus,
                                           cache=elem_cache,
                                           **kwds)
                else:
                    if order % 2 == 0 and (impl is None or impl == 'ntl'):
                        from element_ntl_gf2e import FiniteField_ntl_gf2e
                        K = FiniteField_ntl_gf2e(order, name, modulus, **kwds)
                    else:
                        from finite_field_ext_pari import FiniteField_ext_pari
                        K = FiniteField_ext_pari(order, name, modulus, **kwds)

        return K
Beispiel #3
0
    def create_object(self, version, key, **kwds):
        """
        EXAMPLES::

            sage: K = GF(19) # indirect doctest
            sage: TestSuite(K).run()

        We try to create finite fields with various implementations::

            sage: k = GF(2, impl='modn')
            sage: k = GF(2, impl='givaro')
            sage: k = GF(2, impl='ntl')
            sage: k = GF(2, impl='pari_ffelt')
            Traceback (most recent call last):
            ...
            ValueError: the degree must be at least 2
            sage: k = GF(2, impl='pari_mod')
            Traceback (most recent call last):
            ...
            ValueError: The size of the finite field must not be prime.
            sage: k = GF(2, impl='supercalifragilisticexpialidocious')
            Traceback (most recent call last):
            ...
            ValueError: no such finite field implementation: 'supercalifragilisticexpialidocious'
            sage: k.<a> = GF(2^15, impl='modn')
            Traceback (most recent call last):
            ...
            ValueError: the 'modn' implementation requires a prime order
            sage: k.<a> = GF(2^15, impl='givaro')
            sage: k.<a> = GF(2^15, impl='ntl')
            sage: k.<a> = GF(2^15, impl='pari_ffelt')
            sage: k.<a> = GF(2^15, impl='pari_mod')
            sage: k.<a> = GF(3^60, impl='modn')
            Traceback (most recent call last):
            ...
            ValueError: the 'modn' implementation requires a prime order
            sage: k.<a> = GF(3^60, impl='givaro')
            Traceback (most recent call last):
            ...
            ValueError: q must be < 2^16
            sage: k.<a> = GF(3^60, impl='ntl')
            Traceback (most recent call last):
            ...
            ValueError: q must be a 2-power
            sage: k.<a> = GF(3^60, impl='pari_ffelt')
            sage: k.<a> = GF(3^60, impl='pari_mod')
        """
        # IMPORTANT!  If you add a new class to the list of classes
        # that get cached by this factor object, then you *must* add
        # the following method to that class in order to fully support
        # pickling:
        #
        #     def __reduce__(self):   # and include good doctests, please!
        #         return self._factory_data[0].reduce_data(self)
        #
        # This is not in the base class for finite fields, since some finite
        # fields need not be created using this factory object, e.g., residue
        # class fields.

        if len(key) == 5:
            # for backward compatibility of pickles (see trac 10975).
            order, name, modulus, impl, _ = key
            p, n = Integer(order).factor()[0]
            proof = True
        else:
            order, name, modulus, impl, _, p, n, proof = key

        if impl == 'modn':
            if n != 1:
                raise ValueError(
                    "the 'modn' implementation requires a prime order")
            from finite_field_prime_modn import FiniteField_prime_modn
            # Using a check option here is probably a worthwhile
            # compromise since this constructor is simple and used a
            # huge amount.
            K = FiniteField_prime_modn(order, check=False, modulus=modulus)
        else:
            # We have to do this with block so that the finite field
            # constructors below will use the proof flag that was
            # passed in when checking for primality, factoring, etc.
            # Otherwise, we would have to complicate all of their
            # constructors with check options.
            from sage.structure.proof.all import WithProof
            with WithProof('arithmetic', proof):
                if impl == 'givaro':
                    repr = kwds.get('repr', 'poly')
                    elem_cache = kwds.get('elem_cache', order < 500)
                    K = FiniteField_givaro(order,
                                           name,
                                           modulus,
                                           repr=repr,
                                           cache=elem_cache)
                elif impl == 'ntl':
                    from finite_field_ntl_gf2e import FiniteField_ntl_gf2e
                    K = FiniteField_ntl_gf2e(order, name, modulus)
                elif impl == 'pari_ffelt':
                    from finite_field_pari_ffelt import FiniteField_pari_ffelt
                    K = FiniteField_pari_ffelt(p, modulus, name)
                elif (impl == 'pari_mod'
                      or impl == 'pari'):  # for unpickling old pickles
                    # This implementation is deprecated, a warning will
                    # be given when this field is created.
                    # See http://trac.sagemath.org/ticket/17297
                    from finite_field_ext_pari import FiniteField_ext_pari
                    K = FiniteField_ext_pari(order, name, modulus)
                else:
                    raise ValueError(
                        "no such finite field implementation: %r" % impl)

            # Temporary; see create_key_and_extra_args() above.
            if 'prefix' in kwds:
                K._prefix = kwds['prefix']

        return K