def _finite_field_ext_pari_(self): """ Return a FiniteField_ext_pari isomorphic to self with the same defining polynomial. This method will vanish eventually because that implementation of finite fields will be deprecated. EXAMPLES:: sage: k.<a> = GF(2^20) sage: kP = k._finite_field_ext_pari_() sage: kP Finite Field in a of size 2^20 sage: type(kP) <class 'sage.rings.finite_rings.finite_field_ext_pari.FiniteField_ext_pari_with_category'> """ f = self.polynomial() return FiniteField_ext_pari(self.order(), self.variable_name(), f)
def create_object(self, version, key, check_irreducible=True, elem_cache=None, names=None, **kwds): """ EXAMPLES:: sage: K = GF(19) sage: TestSuite(K).run() """ # IMPORTANT! If you add a new class to the list of classes # that get cached by this factor object, then you *must* add # the following method to that class in order to fully support # pickling: # # def __reduce__(self): # and include good doctests, please! # return self._factory_data[0].reduce_data(self) # # This is not in the base class for finite fields, since some finite # fields need not be created using this factory object, e.g., residue # class fields. if len(key) == 5: # for backward compatibility of pickles (see trac 10975). order, name, modulus, impl, _ = key p, n = arith.factor(order)[0] proof = True else: order, name, modulus, impl, _, p, n, proof = key if isinstance(modulus, str) and modulus.startswith("random"): modulus = "random" if elem_cache is None: elem_cache = order < 500 if n == 1 and (impl is None or impl == 'modn'): from finite_field_prime_modn import FiniteField_prime_modn # Using a check option here is probably a worthwhile # compromise since this constructor is simple and used a # huge amount. K = FiniteField_prime_modn(order, check=False, **kwds) else: # We have to do this with block so that the finite field # constructors below will use the proof flag that was # passed in when checking for primality, factoring, etc. # Otherwise, we would have to complicate all of their # constructors with check options (like above). from sage.structure.proof.all import WithProof with WithProof('arithmetic', proof): if check_irreducible and polynomial_element.is_Polynomial( modulus): if modulus.parent().base_ring().characteristic() == 0: modulus = modulus.change_ring(FiniteField(p)) if not modulus.is_irreducible(): raise ValueError( "finite field modulus must be irreducible but it is not." ) if modulus.degree() != n: raise ValueError( "The degree of the modulus does not correspond to the cardinality of the field." ) if name is None: raise TypeError("you must specify the generator name.") if order < zech_log_bound: # DO *NOT* use for prime subfield, since that would lead to # a circular reference in the call to ParentWithGens in the # __init__ method. K = FiniteField_givaro(order, name, modulus, cache=elem_cache, **kwds) else: if order % 2 == 0 and (impl is None or impl == 'ntl'): from element_ntl_gf2e import FiniteField_ntl_gf2e K = FiniteField_ntl_gf2e(order, name, modulus, **kwds) else: from finite_field_ext_pari import FiniteField_ext_pari K = FiniteField_ext_pari(order, name, modulus, **kwds) return K
def create_object(self, version, key, **kwds): """ EXAMPLES:: sage: K = GF(19) # indirect doctest sage: TestSuite(K).run() We try to create finite fields with various implementations:: sage: k = GF(2, impl='modn') sage: k = GF(2, impl='givaro') sage: k = GF(2, impl='ntl') sage: k = GF(2, impl='pari_ffelt') Traceback (most recent call last): ... ValueError: the degree must be at least 2 sage: k = GF(2, impl='pari_mod') Traceback (most recent call last): ... ValueError: The size of the finite field must not be prime. sage: k = GF(2, impl='supercalifragilisticexpialidocious') Traceback (most recent call last): ... ValueError: no such finite field implementation: 'supercalifragilisticexpialidocious' sage: k.<a> = GF(2^15, impl='modn') Traceback (most recent call last): ... ValueError: the 'modn' implementation requires a prime order sage: k.<a> = GF(2^15, impl='givaro') sage: k.<a> = GF(2^15, impl='ntl') sage: k.<a> = GF(2^15, impl='pari_ffelt') sage: k.<a> = GF(2^15, impl='pari_mod') sage: k.<a> = GF(3^60, impl='modn') Traceback (most recent call last): ... ValueError: the 'modn' implementation requires a prime order sage: k.<a> = GF(3^60, impl='givaro') Traceback (most recent call last): ... ValueError: q must be < 2^16 sage: k.<a> = GF(3^60, impl='ntl') Traceback (most recent call last): ... ValueError: q must be a 2-power sage: k.<a> = GF(3^60, impl='pari_ffelt') sage: k.<a> = GF(3^60, impl='pari_mod') """ # IMPORTANT! If you add a new class to the list of classes # that get cached by this factor object, then you *must* add # the following method to that class in order to fully support # pickling: # # def __reduce__(self): # and include good doctests, please! # return self._factory_data[0].reduce_data(self) # # This is not in the base class for finite fields, since some finite # fields need not be created using this factory object, e.g., residue # class fields. if len(key) == 5: # for backward compatibility of pickles (see trac 10975). order, name, modulus, impl, _ = key p, n = Integer(order).factor()[0] proof = True else: order, name, modulus, impl, _, p, n, proof = key if impl == 'modn': if n != 1: raise ValueError( "the 'modn' implementation requires a prime order") from finite_field_prime_modn import FiniteField_prime_modn # Using a check option here is probably a worthwhile # compromise since this constructor is simple and used a # huge amount. K = FiniteField_prime_modn(order, check=False, modulus=modulus) else: # We have to do this with block so that the finite field # constructors below will use the proof flag that was # passed in when checking for primality, factoring, etc. # Otherwise, we would have to complicate all of their # constructors with check options. from sage.structure.proof.all import WithProof with WithProof('arithmetic', proof): if impl == 'givaro': repr = kwds.get('repr', 'poly') elem_cache = kwds.get('elem_cache', order < 500) K = FiniteField_givaro(order, name, modulus, repr=repr, cache=elem_cache) elif impl == 'ntl': from finite_field_ntl_gf2e import FiniteField_ntl_gf2e K = FiniteField_ntl_gf2e(order, name, modulus) elif impl == 'pari_ffelt': from finite_field_pari_ffelt import FiniteField_pari_ffelt K = FiniteField_pari_ffelt(p, modulus, name) elif (impl == 'pari_mod' or impl == 'pari'): # for unpickling old pickles # This implementation is deprecated, a warning will # be given when this field is created. # See http://trac.sagemath.org/ticket/17297 from finite_field_ext_pari import FiniteField_ext_pari K = FiniteField_ext_pari(order, name, modulus) else: raise ValueError( "no such finite field implementation: %r" % impl) # Temporary; see create_key_and_extra_args() above. if 'prefix' in kwds: K._prefix = kwds['prefix'] return K