Beispiel #1
0
from frovedis.mllib.gmm import GaussianMixture

# initializing the Frovedis server
argvs = sys.argv
argc = len(argvs)
if (argc < 2):
    print(
        'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")'
    )
    quit()
FrovedisServer.initialize(argvs[1])

train_mat = np.loadtxt("./input/gmm_data.txt")

# creating spectral agglomerative object
n_components = 2

try:
    gmm_model = GaussianMixture(n_components=n_components)
    # fitting the training matrix on gaussian mixture object
    gmm_model.fit(train_mat)
    cov = gmm_model.covariances_
except Exception as e:
    print("status=Exception: " + str(e))
    sys.exit(1)

if ((cov.shape[0] == n_components) and (cov.shape[1] == train_mat.shape[1])
        and (cov.shape[2] == train_mat.shape[1])):
    print("status=Passed")
else:
    print("status=Failed")