from frovedis.mllib.gmm import GaussianMixture # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if (argc < 2): print( 'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")' ) quit() FrovedisServer.initialize(argvs[1]) train_mat = np.loadtxt("./input/gmm_data.txt") # creating spectral agglomerative object n_components = 2 try: gmm_model = GaussianMixture(n_components=n_components) # fitting the training matrix on gaussian mixture object gmm_model.fit(train_mat) cov = gmm_model.covariances_ except Exception as e: print("status=Exception: " + str(e)) sys.exit(1) if ((cov.shape[0] == n_components) and (cov.shape[1] == train_mat.shape[1]) and (cov.shape[2] == train_mat.shape[1])): print("status=Passed") else: print("status=Failed")