def upload(dataset_id): ''' Upload a zip of one shapefile to datastore ''' datastore = make_datastore(app.config['DATASTORE']) # Check that they uploaded a .zip file if not request.files['file'] or not allowed_file(request.files['file'].filename): return make_response("Only .zip files allowed", 403) # Upload original file to S3 zip_buff = StringIO(request.files['file'].read()) zip_base = '{0}/uploads/trail-segments'.format(dataset_id) datastore.write(zip_base + '.zip', zip_buff) # Get geojson data from shapefile shapefile_path = unzip(zip_buff) geojson_obj = shapefile2geojson(shapefile_path) # Compress geojson file geojson_zip = StringIO() geojson_raw = json.dumps(geojson_obj) zip_file(geojson_zip, geojson_raw, 'trail-segments.geojson') # Upload .geojson.zip file to datastore datastore.write(zip_base + '.geojson.zip', geojson_zip) # Show sample data from original file return redirect('/datasets/' + dataset_id + "/sample-segment")
def name_trails(dataset_id): datastore = make_datastore(app.config['DATASTORE']) dataset = get_dataset(datastore, dataset_id) if not dataset: return make_response("No Dataset Found", 404) # Download the transformed segments file transformed_segments_path = '{0}/opentrails/segments.geojson.zip'.format(dataset.id) transformed_segments_zip = datastore.read(transformed_segments_path) # Unzip it segments_path = unzip(transformed_segments_zip, '.geojson', []) transformed_segments = json.load(open(segments_path)) # Generate a list of (name, ids) tuples named_trails = make_named_trails(transformed_segments['features']) file = StringIO() cols = 'id', 'name', 'segment_ids', 'description', 'part_of' writer = csv.writer(file) writer.writerow(cols) for row in named_trails: writer.writerow([(row[c] or '').encode('utf8') for c in cols]) named_trails_path = '{0}/opentrails/named_trails.csv'.format(dataset.id) datastore.write(named_trails_path, file) return redirect('/datasets/' + dataset.id + '/named-trails', code=303)
def transform_trailheads(dataset_id): ''' Grab a zip file off of datastore Unzip it Transform into opentrails Upload ''' datastore = make_datastore(app.config['DATASTORE']) dataset = get_dataset(datastore, dataset_id) if not dataset: return make_response("No Dataset Found", 404) # Download the original trailheads file up_trailheads_name = '{0}/uploads/trail-trailheads.geojson.zip'.format(dataset.id) up_trailheads_zip = datastore.read(up_trailheads_name) # Unzip it up_trailheads_path = unzip(up_trailheads_zip, '.geojson', []) up_trailheads = json.load(open(up_trailheads_path)) messages, ot_trailheads = trailheads_transform(up_trailheads, dataset) # Save messages for output transform_messages_path = dataset.id + "/opentrails/trailheads-messages.json" datastore.write(transform_messages_path, StringIO(json.dumps(messages))) # Make a zip from transformed trailheads ot_trailheads_zip = StringIO() ot_trailheads_raw = json.dumps(ot_trailheads, sort_keys=True) zip_file(ot_trailheads_zip, ot_trailheads_raw, 'trailheads.geojson') # Upload transformed trailheads and messages zip_path = '{0}/opentrails/trailheads.geojson.zip'.format(dataset.id) datastore.write(zip_path, ot_trailheads_zip) return redirect('/datasets/' + dataset.id + '/transformed-trailheads', code=303)
def upload(dataset_id): ''' Upload a zip of one shapefile to datastore ''' datastore = make_datastore(app.config['DATASTORE']) # Check that they uploaded a .zip file if not request.files['file'] or not allowed_file( request.files['file'].filename): return make_response("Only .zip files allowed", 403) # Upload original file to S3 zip_buff = StringIO(request.files['file'].read()) zip_base = '{0}/uploads/trail-segments'.format(dataset_id) datastore.write(zip_base + '.zip', zip_buff) # Get geojson data from shapefile shapefile_path = unzip(zip_buff) geojson_obj = shapefile2geojson(shapefile_path) # Compress geojson file geojson_zip = StringIO() geojson_raw = json.dumps(geojson_obj) zip_file(geojson_zip, geojson_raw, 'trail-segments.geojson') # Upload .geojson.zip file to datastore datastore.write(zip_base + '.geojson.zip', geojson_zip) # Show sample data from original file return redirect('/datasets/' + dataset_id + "/sample-segment")
def name_trails(dataset_id): datastore = make_datastore(app.config['DATASTORE']) dataset = get_dataset(datastore, dataset_id) if not dataset: return make_response("No Dataset Found", 404) # Download the transformed segments file transformed_segments_path = '{0}/opentrails/segments.geojson.zip'.format( dataset.id) transformed_segments_zip = datastore.read(transformed_segments_path) # Unzip it segments_path = unzip(transformed_segments_zip, '.geojson', []) transformed_segments = json.load(open(segments_path)) # Generate a list of (name, ids) tuples named_trails = make_named_trails(transformed_segments['features']) file = StringIO() cols = 'id', 'name', 'segment_ids', 'description', 'part_of' writer = csv.writer(file) writer.writerow(cols) for row in named_trails: writer.writerow([(row[c] or '').encode('utf8') for c in cols]) named_trails_path = '{0}/opentrails/named_trails.csv'.format(dataset.id) datastore.write(named_trails_path, file) return redirect('/datasets/' + dataset.id + '/named-trails', code=303)
def merger(files,env_to_merge, dossier_work, separateurcsv=','): ### create dir new if not os.path.exists(dossier_work+'new/'): os.makedirs(dossier_work+'new/') ### create dir env ### unzip all env in dir for environement in env_to_merge: if not os.path.exists(dossier_work+environement+'/'): os.makedirs(dossier_work+environement+'/') unzip(dossier_work+environement+'.zip', dossier_work+environement+'/') ## delete dl zip os.remove(dossier_work+environement+'.zip') for fichier in files: print(environement+ '--' +fichier[0]) output = codecs.open(dossier_work+'new/'+fichier[0]+'.txt', 'w', 'utf-8') header=[] for champs in fichier[1]: # Write header header.append(champs[0]) temp=csv_list_to_raw_str(header) output.write(temp) for environement in env_to_merge: if os.path.isfile(dossier_work+environement+'/'+fichier[0]+'.txt'): marker=environement.replace('-','_')+':' file = codecs.open(dossier_work+environement+'/'+fichier[0]+'.txt', 'r', 'utf-8') reader = csv.reader(file, delimiter=separateurcsv, quoting=csv.QUOTE_MINIMAL) count=0 positions=[] for row in reader: if count==0: for champs in fichier[1]: positions.append(findposition(champs[0],row)) #Find position of every fields else: row_to_write=[] i=0 for champs in fichier[1]: if positions[i]!=999: value=row[positions[i]] if champs[1]==1: value=marker+value else: value='' row_to_write.append(value) i+=1 temp=csv_list_to_raw_str(row_to_write) output.write(temp) count+=1 else: print("FILE "+environement+" - "+fichier[0]+" NOT EXIST")
def transform_trailheads(dataset_id): ''' Grab a zip file off of datastore Unzip it Transform into opentrails Upload ''' datastore = make_datastore(app.config['DATASTORE']) dataset = get_dataset(datastore, dataset_id) if not dataset: return make_response("No Dataset Found", 404) # Download the original trailheads file up_trailheads_name = '{0}/uploads/trail-trailheads.geojson.zip'.format( dataset.id) up_trailheads_zip = datastore.read(up_trailheads_name) # Unzip it up_trailheads_path = unzip(up_trailheads_zip, '.geojson', []) up_trailheads = json.load(open(up_trailheads_path)) messages, ot_trailheads = trailheads_transform(up_trailheads, dataset) # Save messages for output transform_messages_path = dataset.id + "/opentrails/trailheads-messages.json" datastore.write(transform_messages_path, StringIO(json.dumps(messages))) # Make a zip from transformed trailheads ot_trailheads_zip = StringIO() ot_trailheads_raw = json.dumps(ot_trailheads, sort_keys=True) zip_file(ot_trailheads_zip, ot_trailheads_raw, 'trailheads.geojson') # Upload transformed trailheads and messages zip_path = '{0}/opentrails/trailheads.geojson.zip'.format(dataset.id) datastore.write(zip_path, ot_trailheads_zip) return redirect('/datasets/' + dataset.id + '/transformed-trailheads', code=303)
# func.ShowImage(result_of_h1_pool, PixelsToBeRedH1pool,'Final_image_No1_0.20 .png', 0.2, RowNumber=4, ColNumber=8) PixelsToBeRedConv1 = func.unpooling(PixelsToBeRedH1pool, conv_1_result) # func.ShowImage(conv_1_result, PixelsToBeRedConv1,'Final_image_No1_0.20 .png', 0.2, RowNumber=4, ColNumber=8) PixelsToBeRedImage = func.Deconvolution(PixelsToBeRedConv1, Conv1Kernel, image) PixelsToBeRedImage = func.CollectRedValues(PixelsToBeRedImage, image) func.ShowImage(image, PixelsToBeRedImage, TrueNum, threshold, correct, probabilities[0, TestNumber], ShowNotSave) return correct, probabilities[0, TestNumber] func.unzip('ubyte.gz') X_data = np.array([[]]) y_data = np.array([[]]) X_data, y_data = func.LoadTrainData('./', 'train') X_test_cand, y_test_cand = func.LoadTrainData('./', 't10k') X_train, y_train = X_data[:55000, :], y_data[:55000] X_valid, y_valid = X_data[55000:, :], y_data[55000:] X_test_cand = X_test_cand[np.argsort(y_test_cand)] y_test_cand = y_test_cand[np.argsort(y_test_cand)] tmp = 0 StartIndex = np.array([0]) for index, i in enumerate(y_test_cand):