Beispiel #1
0
def test_skybox():
    # Test scene created without skybox
    scene = window.Scene()
    npt.assert_warns(UserWarning, scene.skybox)
    # Test removing automatically shown skybox
    test_tex = Texture()
    test_tex.CubeMapOn()
    checker_arr = np.array([[1, 0], [0, 1]], dtype=np.uint8) * 255
    for i in range(6):
        vtk_img = ImageData()
        vtk_img.SetDimensions(2, 2, 1)
        img_arr = np.zeros((2, 2, 3), dtype=np.uint8)
        img_arr[:, :, i // 2] = checker_arr
        vtk_arr = numpy_support.numpy_to_vtk(img_arr.reshape((-1, 3),
                                                             order='F'))
        vtk_arr.SetName('Image')
        img_point_data = vtk_img.GetPointData()
        img_point_data.AddArray(vtk_arr)
        img_point_data.SetActiveScalars('Image')
        test_tex.SetInputDataObject(i, vtk_img)
    scene = window.Scene(skybox=test_tex)
    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors, 1)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 75, :], [0, 0, 255])
    npt.assert_array_equal(ss[75, 225, :], [0, 0, 0])
    scene.yaw(90)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 75, :], [255, 0, 0])
    npt.assert_array_equal(ss[75, 225, :], [0, 0, 0])
    scene.pitch(90)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 75, :], [0, 0, 0])
    npt.assert_array_equal(ss[75, 225, :], [0, 255, 0])
    # Test skybox is not added twice
    scene.skybox()
    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors, 1)
    # Test make skybox invisible
    scene.skybox(visible=False)
    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors, 0)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 75, :], [0, 0, 0])
    scene.yaw(90)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 75, :], [0, 0, 0])
    scene.pitch(90)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 225, :], [0, 0, 0])
    # Test make skybox visible again
    scene.skybox(visible=True)
    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors, 1)
Beispiel #2
0
def test_text_widget():

    interactive = False

    scene = window.Scene()
    axes = actor.axes()
    window.add(scene, axes)
    scene.ResetCamera()

    show_manager = window.ShowManager(scene, size=(900, 900))

    if interactive:
        show_manager.initialize()
        show_manager.render()

    fetch_viz_icons()
    button_png = read_viz_icons(fname='home3.png')

    def button_callback(obj, event):
        print('Button Pressed')

    button = widget.button(show_manager.iren, show_manager.scene,
                           button_callback, button_png, (.8, 1.2), (100, 100))

    global rulez
    rulez = True

    def text_callback(obj, event):

        global rulez
        print('Text selected')
        if rulez:
            obj.GetTextActor().SetInput("Diffusion Imaging Rulez!!")
            rulez = False
        else:
            obj.GetTextActor().SetInput("Diffusion Imaging in Python")
            rulez = True
        show_manager.render()

    text = widget.text(show_manager.iren,
                       show_manager.scene,
                       text_callback,
                       message="Diffusion Imaging in Python",
                       left_down_pos=(0., 0.),
                       right_top_pos=(0.4, 0.05),
                       opacity=1.,
                       border=False)

    if not interactive:
        button.Off()
        text.Off()
        pass

    if interactive:
        show_manager.render()
        show_manager.start()

    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors, 3)
Beispiel #3
0
def test_peak_slicer(interactive=False):

    _peak_dirs = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype='f4')
    # peak_dirs.shape = (1, 1, 1) + peak_dirs.shape

    peak_dirs = np.zeros((11, 11, 11, 3, 3))

    peak_values = np.random.rand(11, 11, 11, 3)

    peak_dirs[:, :, :] = _peak_dirs

    scene = window.Scene()
    peak_actor = actor.peak_slicer(peak_dirs)
    scene.add(peak_actor)
    scene.add(actor.axes((11, 11, 11)))
    if interactive:
        window.show(scene)

    scene.clear()
    scene.add(peak_actor)
    scene.add(actor.axes((11, 11, 11)))
    for k in range(11):
        peak_actor.display_extent(0, 10, 0, 10, k, k)

    for j in range(11):
        peak_actor.display_extent(0, 10, j, j, 0, 10)

    for i in range(11):
        peak_actor.display(i, None, None)

    scene.rm_all()

    peak_actor = actor.peak_slicer(
        peak_dirs,
        peak_values,
        mask=None,
        affine=np.diag([3, 2, 1, 1]),
        colors=None,
        opacity=0.8,
        linewidth=3,
        lod=True,
        lod_points=10 ** 4,
        lod_points_size=3)

    scene.add(peak_actor)
    scene.add(actor.axes((11, 11, 11)))
    if interactive:
        window.show(scene)

    report = window.analyze_scene(scene)
    ex = ['vtkLODActor', 'vtkOpenGLActor']
    npt.assert_equal(report.actors_classnames, ex)

    # 6d data
    data_6d = (255 * np.random.rand(5, 5, 5, 5, 5, 5))
    npt.assert_raises(ValueError, actor.peak_slicer, data_6d, data_6d)
Beispiel #4
0
def test_scene():

    scene = window.Scene()

    npt.assert_equal(scene.size(), (0, 0))

    # background color for scene (1, 0.5, 0)
    # 0.001 added here to remove numerical errors when moving from float
    # to int values
    bg_float = (1, 0.501, 0)

    # that will come in the image in the 0-255 uint scale
    bg_color = tuple((np.round(255 * np.array(bg_float))).astype('uint8'))

    scene.background(bg_float)
    # window.show(scene)
    arr = window.snapshot(scene)

    report = window.analyze_snapshot(arr,
                                     bg_color=bg_color,
                                     colors=[bg_color, (0, 127, 0)])
    npt.assert_equal(report.objects, 0)
    npt.assert_equal(report.colors_found, [True, False])

    axes = actor.axes()
    scene.add(axes)
    # window.show(scene)

    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color)
    npt.assert_equal(report.objects, 1)

    scene.rm(axes)
    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color)
    npt.assert_equal(report.objects, 0)

    scene.add(axes)
    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color)
    npt.assert_equal(report.objects, 1)

    scene.rm_all()
    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color)
    npt.assert_equal(report.objects, 0)

    ren2 = window.Scene(bg_float)
    ren2.background((0, 0, 0.))

    report = window.analyze_scene(ren2)
    npt.assert_equal(report.bg_color, (0, 0, 0))

    ren2.add(axes)

    report = window.analyze_scene(ren2)
    npt.assert_equal(report.actors, 3)

    ren2.rm(axes)
    report = window.analyze_scene(ren2)
    npt.assert_equal(report.actors, 0)

    with captured_output() as (out, err):
        scene.camera_info()
    npt.assert_equal(
        out.getvalue().strip(), '# Active Camera\n   '
        'Position (0.00, 0.00, 1.00)\n   '
        'Focal Point (0.00, 0.00, 0.00)\n   '
        'View Up (0.00, 1.00, 0.00)')
    npt.assert_equal(err.getvalue().strip(), '')
Beispiel #5
0
def test_bundle_maps():
    scene = window.Scene()
    bundle = simulated_bundle(no_streamlines=10, waves=False)

    metric = 100 * np.ones((200, 200, 200))

    # add lower values
    metric[100, :, :] = 100 * 0.5

    # create a nice orange-red colormap
    lut = actor.colormap_lookup_table(scale_range=(0., 100.),
                                      hue_range=(0., 0.1),
                                      saturation_range=(1, 1),
                                      value_range=(1., 1))

    line = actor.line(bundle, metric, linewidth=0.1, lookup_colormap=lut)
    scene.add(line)
    scene.add(actor.scalar_bar(lut, ' '))

    report = window.analyze_scene(scene)

    npt.assert_almost_equal(report.actors, 1)
    # window.show(scene)

    scene.clear()

    nb_points = np.sum([len(b) for b in bundle])
    values = 100 * np.random.rand(nb_points)
    # values[:nb_points/2] = 0

    line = actor.streamtube(bundle, values, linewidth=0.1, lookup_colormap=lut)
    scene.add(line)
    # window.show(scene)

    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors_classnames[0], 'vtkLODActor')

    scene.clear()

    colors = np.random.rand(nb_points, 3)
    # values[:nb_points/2] = 0

    line = actor.line(bundle, colors, linewidth=2)
    scene.add(line)
    # window.show(scene)

    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors_classnames[0], 'vtkLODActor')
    # window.show(scene)

    arr = window.snapshot(scene)
    report2 = window.analyze_snapshot(arr)
    npt.assert_equal(report2.objects, 1)

    # try other input options for colors
    scene.clear()
    actor.line(bundle, (1., 0.5, 0))
    actor.line(bundle, np.arange(len(bundle)))
    actor.line(bundle)
    colors = [np.random.rand(*b.shape) for b in bundle]
    actor.line(bundle, colors=colors)
Beispiel #6
0
def test_odf_slicer(interactive=False):

    sphere = get_sphere('symmetric362')

    shape = (11, 11, 11, sphere.vertices.shape[0])

    fid, fname = mkstemp(suffix='_odf_slicer.mmap')
    print(fid)
    print(fname)

    odfs = np.memmap(fname, dtype=np.float64, mode='w+', shape=shape)

    odfs[:] = 1

    affine = np.eye(4)
    scene = window.Scene()

    mask = np.ones(odfs.shape[:3])
    mask[:4, :4, :4] = 0

    odfs[..., 0] = 1

    odf_actor = actor.odf_slicer(odfs,
                                 affine,
                                 mask=mask,
                                 sphere=sphere,
                                 scale=.25,
                                 colormap='blues')
    fa = 0. * np.zeros(odfs.shape[:3])
    fa[:, 0, :] = 1.
    fa[:, -1, :] = 1.
    fa[0, :, :] = 1.
    fa[-1, :, :] = 1.
    fa[5, 5, 5] = 1

    k = 5
    I, J, _ = odfs.shape[:3]

    fa_actor = actor.slicer(fa, affine)
    fa_actor.display_extent(0, I, 0, J, k, k)
    scene.add(odf_actor)
    scene.reset_camera()
    scene.reset_clipping_range()

    odf_actor.display_extent(0, I, 0, J, k, k)
    odf_actor.GetProperty().SetOpacity(1.0)
    if interactive:
        window.show(scene, reset_camera=False)

    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, find_objects=True)
    npt.assert_equal(report.objects, 11 * 11)

    scene.clear()
    scene.add(fa_actor)
    scene.reset_camera()
    scene.reset_clipping_range()
    if interactive:
        window.show(scene)

    mask[:] = 0
    mask[5, 5, 5] = 1
    fa[5, 5, 5] = 0
    fa_actor = actor.slicer(fa, None)
    fa_actor.display(None, None, 5)
    odf_actor = actor.odf_slicer(odfs,
                                 None,
                                 mask=mask,
                                 sphere=sphere,
                                 scale=.25,
                                 colormap='blues',
                                 norm=False,
                                 global_cm=True)
    scene.clear()
    scene.add(fa_actor)
    scene.add(odf_actor)
    scene.reset_camera()
    scene.reset_clipping_range()
    if interactive:
        window.show(scene)

    scene.clear()
    scene.add(odf_actor)
    scene.add(fa_actor)
    odfs[:, :, :] = 1
    mask = np.ones(odfs.shape[:3])
    odf_actor = actor.odf_slicer(odfs,
                                 None,
                                 mask=mask,
                                 sphere=sphere,
                                 scale=.25,
                                 colormap='blues',
                                 norm=False,
                                 global_cm=True)

    scene.clear()
    scene.add(odf_actor)
    scene.add(fa_actor)
    scene.add(actor.axes((11, 11, 11)))
    for i in range(11):
        odf_actor.display(i, None, None)
        fa_actor.display(i, None, None)
        if interactive:
            window.show(scene)
    for j in range(11):
        odf_actor.display(None, j, None)
        fa_actor.display(None, j, None)
        if interactive:
            window.show(scene)
    # with mask equal to zero everything should be black
    mask = np.zeros(odfs.shape[:3])
    odf_actor = actor.odf_slicer(odfs,
                                 None,
                                 mask=mask,
                                 sphere=sphere,
                                 scale=.25,
                                 colormap='blues',
                                 norm=False,
                                 global_cm=True)
    scene.clear()
    scene.add(odf_actor)
    scene.reset_camera()
    scene.reset_clipping_range()
    if interactive:
        window.show(scene)

    npt.assert_raises(IOError,
                      actor.odf_slicer,
                      odfs,
                      None,
                      mask=None,
                      sphere=sphere,
                      scale=.25,
                      colormap=None,
                      norm=False,
                      global_cm=True)

    # colormap=None and global_cm=False results in directionally encoded colors
    scene.clear()
    scene.add(odf_actor)
    scene.add(fa_actor)
    odfs[:, :, :] = 1
    odf_actor = actor.odf_slicer(odfs,
                                 None,
                                 mask=None,
                                 sphere=sphere,
                                 scale=.25,
                                 colormap=None,
                                 norm=False,
                                 global_cm=False)

    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors, 1)
    npt.assert_equal(report.actors_classnames[0], 'vtkLODActor')

    del odf_actor
    odfs._mmap.close()
    del odfs
    os.close(fid)

    os.remove(fname)
Beispiel #7
0
def test_scene():
    scene = window.Scene()
    # Scene size test
    npt.assert_equal(scene.size(), (0, 0))
    # Color background test
    # Background color for scene (1, 0.5, 0). 0.001 added here to remove
    # numerical errors when moving from float to int values
    bg_float = (1, 0.501, 0)
    # That will come in the image in the 0-255 uint scale
    bg_color = tuple((np.round(255 * np.array(bg_float))).astype('uint8'))
    scene.background(bg_float)
    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color=bg_color,
                                     colors=[bg_color, (0, 127, 0)])
    npt.assert_equal(report.objects, 0)
    npt.assert_equal(report.colors_found, [True, False])
    # Add actor to scene to test the remove actor function by analyzing a
    # snapshot
    axes = actor.axes()
    scene.add(axes)
    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color)
    npt.assert_equal(report.objects, 1)
    # Test remove actor function by analyzing a snapshot
    scene.rm(axes)
    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color)
    npt.assert_equal(report.objects, 0)
    # Add actor to scene to test the remove all actors function by analyzing a
    # snapshot
    scene.add(axes)
    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color)
    npt.assert_equal(report.objects, 1)
    # Test remove all actors function by analyzing a snapshot
    scene.rm_all()
    arr = window.snapshot(scene)
    report = window.analyze_snapshot(arr, bg_color)
    npt.assert_equal(report.objects, 0)
    # Test change background color from scene by analyzing the scene
    ren2 = window.Scene(bg_float)
    ren2.background((0, 0, 0.))
    report = window.analyze_scene(ren2)
    npt.assert_equal(report.bg_color, (0, 0, 0))
    # Add actor to scene to test the remove actor function by analyzing the
    # scene
    ren2.add(axes)
    report = window.analyze_scene(ren2)
    npt.assert_equal(report.actors, 1)
    # Test remove actor function by analyzing the scene
    ren2.rm(axes)
    report = window.analyze_scene(ren2)
    npt.assert_equal(report.actors, 0)
    # Test camera information retrieving
    with captured_output() as (out, err):
        scene.camera_info()
    npt.assert_equal(out.getvalue().strip(),
                     '# Active Camera\n   '
                     'Position (0.00, 0.00, 1.00)\n   '
                     'Focal Point (0.00, 0.00, 0.00)\n   '
                     'View Up (0.00, 1.00, 0.00)')
    npt.assert_equal(err.getvalue().strip(), '')
    # Test skybox
    scene = window.Scene()
    npt.assert_equal(scene.GetUseImageBasedLighting(), False)
    npt.assert_equal(scene.GetAutomaticLightCreation(), 1)
    npt.assert_equal(scene.GetSphericalHarmonics(), None)
    npt.assert_equal(scene.GetEnvironmentTexture(), None)
    test_tex = Texture()
    scene = window.Scene(skybox=test_tex)
    npt.assert_equal(scene.GetUseImageBasedLighting(), True)
    npt.assert_equal(scene.GetAutomaticLightCreation(), 0)
    npt.assert_equal(scene.GetSphericalHarmonics(), None)
    npt.assert_equal(scene.GetEnvironmentTexture(), test_tex)
    # Test automatically shown skybox
    test_tex = Texture()
    test_tex.CubeMapOn()
    checker_arr = np.array([[1, 0], [0, 1]], dtype=np.uint8) * 255
    for i in range(6):
        vtk_img = ImageData()
        vtk_img.SetDimensions(2, 2, 1)
        img_arr = np.zeros((2, 2, 3), dtype=np.uint8)
        img_arr[:, :, i // 2] = checker_arr
        vtk_arr = numpy_support.numpy_to_vtk(img_arr.reshape((-1, 3),
                                                             order='F'))
        vtk_arr.SetName('Image')
        img_point_data = vtk_img.GetPointData()
        img_point_data.AddArray(vtk_arr)
        img_point_data.SetActiveScalars('Image')
        test_tex.SetInputDataObject(i, vtk_img)
    scene = window.Scene(skybox=test_tex)
    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors, 1)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 75, :], [0, 0, 255])
    npt.assert_array_equal(ss[75, 225, :], [0, 0, 0])
    scene.yaw(90)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 75, :], [255, 0, 0])
    npt.assert_array_equal(ss[75, 225, :], [0, 0, 0])
    scene.pitch(90)
    ss = window.snapshot(scene)
    npt.assert_array_equal(ss[75, 75, :], [0, 0, 0])
    npt.assert_array_equal(ss[75, 225, :], [0, 255, 0])
Beispiel #8
0
def test_button_and_slider_widgets():
    recording = False
    filename = "test_button_and_slider_widgets.log.gz"
    recording_filename = pjoin(DATA_DIR, filename)
    scene = window.Scene()

    # create some minimalistic streamlines
    lines = [
        np.array([[-1, 0, 0.], [1, 0, 0.]]),
        np.array([[-1, 1, 0.], [1, 1, 0.]])
    ]
    colors = np.array([[1., 0., 0.], [0.3, 0.7, 0.]])
    stream_actor = actor.streamtube(lines, colors)

    states = {
        'camera_button_count': 0,
        'plus_button_count': 0,
        'minus_button_count': 0,
        'slider_moved_count': 0,
    }

    scene.add(stream_actor)

    # the show manager allows to break the rendering process
    # in steps so that the widgets can be added properly
    show_manager = window.ShowManager(scene, size=(800, 800))

    if recording:
        show_manager.initialize()
        show_manager.render()

    def button_callback(obj, event):
        # print('Camera pressed')
        states['camera_button_count'] += 1

    def button_plus_callback(obj, event):
        # print('+ pressed')
        states['plus_button_count'] += 1

    def button_minus_callback(obj, event):
        # print('- pressed')
        states['minus_button_count'] += 1

    fetch_viz_icons()
    button_png = read_viz_icons(fname='camera.png')

    button = widget.button(show_manager.iren, show_manager.scene,
                           button_callback, button_png, (.98, 1.), (80, 50))

    button_png_plus = read_viz_icons(fname='plus.png')
    button_plus = widget.button(show_manager.iren, show_manager.scene,
                                button_plus_callback, button_png_plus,
                                (.98, .9), (120, 50))

    button_png_minus = read_viz_icons(fname='minus.png')
    button_minus = widget.button(show_manager.iren, show_manager.scene,
                                 button_minus_callback, button_png_minus,
                                 (.98, .9), (50, 50))

    def print_status(obj, event):
        rep = obj.GetRepresentation()
        stream_actor.SetPosition((rep.GetValue(), 0, 0))
        states['slider_moved_count'] += 1

    slider = widget.slider(show_manager.iren,
                           show_manager.scene,
                           callback=print_status,
                           min_value=-1,
                           max_value=1,
                           value=0.,
                           label="X",
                           right_normalized_pos=(.98, 0.6),
                           size=(120, 0),
                           label_format="%0.2lf")

    # This callback is used to update the buttons/sliders' position
    # so they can stay on the right side of the window when the window
    # is being resized.

    global size
    size = scene.GetSize()

    if recording:
        show_manager.record_events_to_file(recording_filename)
        print(states)
    else:
        show_manager.play_events_from_file(recording_filename)
        npt.assert_equal(states["camera_button_count"], 7)
        npt.assert_equal(states["plus_button_count"], 3)
        npt.assert_equal(states["minus_button_count"], 4)
        npt.assert_equal(states["slider_moved_count"], 116)

    if not recording:
        button.Off()
        slider.Off()
        # Uncomment below to test the slider and button with analyze
        # button.place(scene)
        # slider.place(scene)

        report = window.analyze_scene(scene)
        # import pylab as plt
        # plt.imshow(report.labels, origin='lower')
        # plt.show()
        npt.assert_equal(report.actors, 1)

    report = window.analyze_scene(scene)
    npt.assert_equal(report.actors, 1)