Beispiel #1
0
    def _save_outputs(self) -> None:
        noise = np.random.normal(
            0, 1,
            (self._outputs_rows * self._outputs_columns, self._latent_dim))
        generated_samples = self._generator.predict(noise)

        plot_save_samples(generated_samples, self._outputs_rows,
                          self._outputs_columns, self._resolution,
                          self._channels, self._outputs_dir, self._epoch)
Beispiel #2
0
    def _save_outputs(self) -> None:
        noise = np.random.normal(
            0, 1,
            (self._outputs_rows * self._outputs_columns, self._latent_dim))
        random_classes = np.random.randint(
            0, self._classes_n, self._outputs_rows * self._outputs_columns)

        generated_samples = self._generator.predict(
            [noise, to_categorical(random_classes, self._classes_n)])

        plot_save_samples(generated_samples, self._outputs_rows,
                          self._outputs_columns, self._resolution,
                          self._channels, self._outputs_dir, self._epoch,
                          np.array(self._classes)[random_classes])