def _save_outputs(self) -> None: noise = np.random.normal( 0, 1, (self._outputs_rows * self._outputs_columns, self._latent_dim)) generated_samples = self._generator.predict(noise) plot_save_samples(generated_samples, self._outputs_rows, self._outputs_columns, self._resolution, self._channels, self._outputs_dir, self._epoch)
def _save_outputs(self) -> None: noise = np.random.normal( 0, 1, (self._outputs_rows * self._outputs_columns, self._latent_dim)) random_classes = np.random.randint( 0, self._classes_n, self._outputs_rows * self._outputs_columns) generated_samples = self._generator.predict( [noise, to_categorical(random_classes, self._classes_n)]) plot_save_samples(generated_samples, self._outputs_rows, self._outputs_columns, self._resolution, self._channels, self._outputs_dir, self._epoch, np.array(self._classes)[random_classes])