def calculate(self): """Calculates the nearest neighbor statistic.""" #### Attribute Shortcuts #### ssdo = self.ssdo gaTable = ssdo.gaTable N = ssdo.numObs studyArea = self.studyArea ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84007), 0, N, 1) #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaConcept = self.concept.lower() gaSearch.init_nearest(0.0, 1, gaConcept) neighDist = ARC._ss.NeighborDistances(gaTable, gaSearch) distances = NUM.empty((N,), float) #### Add All NN Distances #### for row in xrange(N): distances[row] = neighDist[row][-1][0] ARCPY.SetProgressorPosition() maxDist = distances.max() if ssdo.useChordal: hardMaxExtent = ARC._ss.get_max_gcs_distance(ssdo.spatialRef) if maxDist > hardMaxExtent: ARCPY.AddIDMessage("ERROR", 1609) raise SystemExit() #### Calculate Mean Nearest Neighbor Distance #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84007)) observedMeanDist = distances.mean() #### Calculate Expected Mean Nearest Neighbor Distance #### expectedMeanDist = 1.0 / (2.0 * ((N / studyArea)**0.5)) #### Calculate the Z-Score #### standardError = 0.26136 / ((N**2.0 / studyArea)**0.5) #### Verify Results #### check1 = abs(expectedMeanDist) > 0.0 check2 = abs(standardError) > 0.0 if not (check1 and check2): ARCPY.AddIDMessage("Error", 907) raise SystemExit() #### Calculate Statistic #### ratio = observedMeanDist / expectedMeanDist zScore = (observedMeanDist - expectedMeanDist) / standardError pVal = STATS.zProb(zScore, type = 2) #### Set Attributes #### self.nn = observedMeanDist self.en = expectedMeanDist self.ratio = ratio self.zn = zScore self.pVal = pVal
def calculate(self): """Calculates the nearest neighbor statistic.""" #### Attribute Shortcuts #### ssdo = self.ssdo gaTable = ssdo.gaTable N = ssdo.numObs studyArea = self.studyArea ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84007), 0, N, 1) #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaConcept = self.concept.lower() gaSearch.init_nearest(0.0, 1, gaConcept) neighDist = ARC._ss.NeighborDistances(gaTable, gaSearch) distances = NUM.empty((N, ), float) #### Add All NN Distances #### for row in xrange(N): distances[row] = neighDist[row][-1][0] ARCPY.SetProgressorPosition() maxDist = distances.max() if ssdo.useChordal: hardMaxExtent = ARC._ss.get_max_gcs_distance(ssdo.spatialRef) if maxDist > hardMaxExtent: ARCPY.AddIDMessage("ERROR", 1609) raise SystemExit() #### Calculate Mean Nearest Neighbor Distance #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84007)) observedMeanDist = distances.mean() #### Calculate Expected Mean Nearest Neighbor Distance #### expectedMeanDist = 1.0 / (2.0 * ((N / studyArea)**0.5)) #### Calculate the Z-Score #### standardError = 0.26136 / ((N**2.0 / studyArea)**0.5) #### Verify Results #### check1 = abs(expectedMeanDist) > 0.0 check2 = abs(standardError) > 0.0 if not (check1 and check2): ARCPY.AddIDMessage("Error", 907) raise SystemExit() #### Calculate Statistic #### ratio = observedMeanDist / expectedMeanDist zScore = (observedMeanDist - expectedMeanDist) / standardError pVal = STATS.zProb(zScore, type=2) #### Set Attributes #### self.nn = observedMeanDist self.en = expectedMeanDist self.ratio = ratio self.zn = zScore self.pVal = pVal
def knnDecision(ssdo): """If no peak autocorrelation distance is found, then return the average at which all features have a desired set of nearest neighbors. This value is scaled to be larger than 3 and no larger than 30. If computed value is larger than 1 standard distance, then return the standard distance instead. INPUTS: ssdo (class): instance of Spatial Stats Data Object """ numNeighs = int(ssdo.numObs * .05) if numNeighs < minNumNeighsSet: numNeighs = minNumNeighsSet if numNeighs > maxNumNeighsSet: numNeighs = maxNumNeighsSet #### KNN Subject #### msg = ARCPY.GetIDMessage(84463) ARCPY.SetProgressor("step", msg, 0, ssdo.numObs, 1) printOHSSubject(84463, addNewLine = False) #### Create k-Nearest Neighbor Search Type #### gaTable = ssdo.gaTable gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(0.0, numNeighs, 'euclidean') neighDist = ARC._ss.NeighborDistances(gaTable, gaSearch) N = len(gaTable) distances = NUM.empty((N, ), float) #### Find All Nearest Neighbor Distance #### for row in xrange(N): distances[row] = neighDist[row][-1][-1] ARCPY.SetProgressorPosition() #### Make Sure it is not Larger Than Standard Distance #### meanDist = distances.mean() if ssdo.useChordal: distValue = meanDist distanceStr = ssdo.distanceInfo.printDistance(distValue) msg = ARCPY.GetIDMessage(84464).format(numNeighs, distanceStr) else: sd = UTILS.standardDistanceCutoff(ssdo.xyCoords) if meanDist > sd: distValue = sd distanceStr = ssdo.distanceInfo.printDistance(distValue) msg = ARCPY.GetIDMessage(84465).format(distanceStr) else: distValue = meanDist distanceStr = ssdo.distanceInfo.printDistance(distValue) msg = ARCPY.GetIDMessage(84464).format(numNeighs, distanceStr) #### KNN/STD Answer #### printOHSAnswer(msg) return distValue
def knnDecision(ssdo): """If no peak autocorrelation distance is found, then return the average at which all features have a desired set of nearest neighbors. This value is scaled to be larger than 3 and no larger than 30. If computed value is larger than 1 standard distance, then return the standard distance instead. INPUTS: ssdo (class): instance of Spatial Stats Data Object """ numNeighs = int(ssdo.numObs * .05) if numNeighs < minNumNeighsSet: numNeighs = minNumNeighsSet if numNeighs > maxNumNeighsSet: numNeighs = maxNumNeighsSet #### KNN Subject #### msg = ARCPY.GetIDMessage(84463) ARCPY.SetProgressor("step", msg, 0, ssdo.numObs, 1) printOHSSubject(84463, addNewLine=False) #### Create k-Nearest Neighbor Search Type #### gaTable = ssdo.gaTable gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(0.0, numNeighs, 'euclidean') neighDist = ARC._ss.NeighborDistances(gaTable, gaSearch) N = len(gaTable) distances = NUM.empty((N, ), float) #### Find All Nearest Neighbor Distance #### for row in xrange(N): distances[row] = neighDist[row][-1][-1] ARCPY.SetProgressorPosition() #### Make Sure it is not Larger Than Standard Distance #### meanDist = distances.mean() if ssdo.useChordal: distValue = meanDist distanceStr = ssdo.distanceInfo.printDistance(distValue) msg = ARCPY.GetIDMessage(84464).format(numNeighs, distanceStr) else: sd = UTILS.standardDistanceCutoff(ssdo.xyCoords) if meanDist > sd: distValue = sd distanceStr = ssdo.distanceInfo.printDistance(distValue) msg = ARCPY.GetIDMessage(84465).format(distanceStr) else: distValue = meanDist distanceStr = ssdo.distanceInfo.printDistance(distValue) msg = ARCPY.GetIDMessage(84464).format(numNeighs, distanceStr) #### KNN/STD Answer #### printOHSAnswer(msg) return distValue
def __init__(self, ssdo, dependentVar, independentVars, weightsFile, outputReportFile=None, outputTable=None, maxIndVars=5, minIndVars=1, minR2=.5, maxCoef=.01, maxVIF=5.0, minJB=.1, minMI=.1): ARCPY.env.overwriteOutput = True #### Set Initial Attributes #### UTILS.assignClassAttr(self, locals()) self.masterField = self.ssdo.masterField self.warnedTProb = False #### Set Boolean For Passing All Moran's I #### self.allMIPass = UTILS.compareFloat(0.0, self.minMI, rTol=.00000001) #### Assess Whether SWM File Being Used #### if weightsFile: weightSuffix = weightsFile.split(".")[-1].lower() if weightSuffix == "swm": self.weightsType = "SWM" self.weightsMatrix = self.weightsFile else: self.weightsType = "GWT" self.weightsMatrix = WU.buildTextWeightDict( weightsFile, self.ssdo.master2Order) else: #### If No Weightsfile Provided, Use 8 Nearest Neighbors #### if ssdo.numObs <= 9: nn = ssdo.numObs - 2 ARCPY.AddIDMessage("WARNING", 1500, 8, nn) else: nn = 8 self.weightsType = "GA" gaSearch = GAPY.ga_nsearch(self.ssdo.gaTable) gaSearch.init_nearest(0.0, nn, "euclidean") self.weightsMatrix = gaSearch #### Initialize Data #### self.runModels()
def __init__(self, ssdo, dependentVar, independentVars, weightsFile, outputReportFile = None, outputTable = None, maxIndVars = 5, minIndVars = 1, minR2 = .5, maxCoef = .01, maxVIF = 5.0, minJB = .1, minMI = .1): ARCPY.env.overwriteOutput = True #### Set Initial Attributes #### UTILS.assignClassAttr(self, locals()) self.masterField = self.ssdo.masterField self.warnedTProb = False #### Set Boolean For Passing All Moran's I #### self.allMIPass = UTILS.compareFloat(0.0, self.minMI, rTol = .00000001) #### Assess Whether SWM File Being Used #### if weightsFile: weightSuffix = weightsFile.split(".")[-1].lower() if weightSuffix == "swm": self.weightsType = "SWM" self.weightsMatrix = self.weightsFile else: self.weightsType = "GWT" self.weightsMatrix = WU.buildTextWeightDict(weightsFile, self.ssdo.master2Order) else: #### If No Weightsfile Provided, Use 8 Nearest Neighbors #### if ssdo.numObs <= 9: nn = ssdo.numObs - 2 ARCPY.AddIDMessage("WARNING", 1500, 8, nn) else: nn = 8 self.weightsType = "GA" gaSearch = GAPY.ga_nsearch(self.ssdo.gaTable) gaSearch.init_nearest(0.0, nn, "euclidean") self.weightsMatrix = gaSearch #### Initialize Data #### self.runModels()
def construct(self): """Constructs the neighborhood structure for each feature and dispatches the appropriate values for the calculation of the statistic.""" #### Shorthand Attributes #### ssdo = self.ssdo varName = self.varName concept = self.concept gaConcept = concept.lower() threshold = self.threshold exponent = self.exponent wType = self.wType rowStandard = self.rowStandard numObs = self.numObs master2Order = self.master2Order masterField = ssdo.masterField weightsFile = self.weightsFile #### Assure that Variance is Larger than Zero #### yVar = NUM.var(self.y) if NUM.isnan(yVar) or yVar <= 0.0: ARCPY.AddIDMessage("Error", 906) raise SystemExit() #### Create Deviation Variables #### self.yBar = NUM.mean(self.y) self.yDev = self.y - self.yBar #### Create Base Data Structures/Variables #### self.numer = 0.0 self.denom = NUM.sum(self.yDev**2.0) self.rowSum = NUM.zeros(numObs) self.colSum = NUM.zeros(numObs) self.s0 = 0 self.s1 = 0 self.wij = {} #### Set Neighborhood Structure Type #### if self.weightsFile: if self.swmFileBool: #### Open Spatial Weights and Obtain Chars #### swm = WU.SWMReader(weightsFile) N = swm.numObs rowStandard = swm.rowStandard #### Check to Assure Complete Set of Weights #### if numObs > N: ARCPY.AddIDMessage("Error", 842, numObs, N) raise SystemExit() #### Check if Selection Set #### isSubSet = False if numObs < N: isSubSet = True iterVals = xrange(N) else: #### Warning for GWT with Bad Records/Selection #### if ssdo.selectionSet or ssdo.badRecords: ARCPY.AddIDMessage("WARNING", 1029) #### Build Weights Dictionary #### weightDict = WU.buildTextWeightDict(weightsFile, master2Order) iterVals = master2Order.keys() N = numObs elif wType in [4, 5]: #### Polygon Contiguity #### if wType == 4: contiguityType = "ROOK" else: contiguityType = "QUEEN" contDict = WU.polygonNeighborDict(ssdo.inputFC, ssdo.oidName, contiguityType = contiguityType) iterVals = master2Order.keys() N = numObs else: gaTable = ssdo.gaTable gaSearch = GAPY.ga_nsearch(gaTable) if wType == 7: #### Zone of Indiff, All Related to All #### gaSearch.init_nearest(threshold, numObs, gaConcept) else: #### Inverse and Fixed Distances #### gaSearch.init_nearest(threshold, 0, gaConcept) iterVals = range(numObs) N = numObs neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = wType, exponent = exponent, row_standard = rowStandard) #### Create Progressor #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84007), 0, N, 1) #### Create Neighbor Info Class #### ni = WU.NeighborInfo(masterField) #### Calculation For Each Feature #### for i in iterVals: if self.swmFileBool: #### Using SWM File #### info = swm.swm.readEntry() masterID = info[0] if master2Order.has_key(masterID): rowInfo = WU.getWeightsValuesSWM(info, master2Order, self.yDev, rowStandard = rowStandard, isSubSet = isSubSet) includeIt = True else: includeIt = False elif self.weightsFile and not self.swmFileBool: #### Text Weights #### masterID = i includeIt = True rowInfo = WU.getWeightsValuesText(masterID, master2Order, weightDict, self.yDev) elif wType in [4, 5]: #### Polygon Contiguity #### masterID = i includeIt = True rowInfo = WU.getWeightsValuesCont(masterID, master2Order, contDict, self.yDev, rowStandard = rowStandard) else: #### Distance Based #### masterID = gaTable[i][0] includeIt = True rowInfo = WU.getWeightsValuesOTF(neighWeights, i, self.yDev) #### Subset Boolean for SWM File #### if includeIt: #### Parse Row Info #### orderID, yiDev, nhIDs, nhVals, weights = rowInfo #### Assure Neighbors Exist After Selection #### nn, nhIDs, nhVals, weights = ni.processInfo(masterID, nhIDs, nhVals, weights) if nn: #### Process Feature Contribution to Moran's I #### self.processRow(orderID, yiDev, nhIDs, nhVals, weights) #### Reset Progessor #### ARCPY.SetProgressorPosition() #### Clean Up #### if self.swmFileBool: swm.close() #### Report on Features with No Neighbors #### ni.reportNoNeighbors() #### Report on Features with Large Number of Neighbors #### ni.reportWarnings() ni.reportMaximums() self.neighInfo = ni
def collectEvents(ssdo, outputFC): """This utility converts event data into weighted point data by dissolving all coincident points into unique points with a new count field that contains the number of original features at that location. INPUTS: inputFC (str): path to the input feature class outputFC (str): path to the input feature class """ #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Validate Output Workspace #### ERROR.checkOutputPath(outputFC) #### True Centroid Warning For Non-Point FCs #### if ssdo.shapeType.upper() != "POINT": ARCPY.AddIDMessage("WARNING", 1021) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.inputFC, spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### cnt = UTILS.getCount(ssdo.inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 4) N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 4) #### Process Any Bad Records Encountered #### numBadRecs = cnt - N if numBadRecs: badRecs = WU.parseGAWarnings(gaTable.warnings) if not ssdo.silentWarnings: ERROR.reportBadRecords(cnt, numBadRecs, badRecs, label = ssdo.oidName) #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(0.0, 0, "euclidean") #### Create Output Feature Class #### outPath, outName = OS.path.split(outputFC) try: DM.CreateFeatureclass(outPath, outName, "POINT", "", ssdo.mFlag, ssdo.zFlag, ssdo.spatialRefString) except: ARCPY.AddIDMessage("ERROR", 210, outputFC) raise SystemExit() #### Add Count Field #### countFieldNameOut = ARCPY.ValidateFieldName(countFieldName, outPath) UTILS.addEmptyField(outputFC, countFieldNameOut, "LONG") fieldList = ["SHAPE@", countFieldNameOut] #### Set Insert Cursor #### rowsOut = DA.InsertCursor(outputFC, fieldList) #### Set Progressor for Calculation #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84007), 0, N, 1) #### ID List to Search #### rowsIN = range(N) maxCount = 0 numUnique = 0 for row in rowsIN: #### Get Row Coords #### rowInfo = gaTable[row] x0, y0 = rowInfo[1] count = 1 #### Search For Exact Coord Match #### gaSearch.search_by_idx(row) for nh in gaSearch: count += 1 rowsIN.remove(nh.idx) ARCPY.SetProgressorPosition() #### Keep Track of Max Count #### maxCount = max([count, maxCount]) #### Create Output Point #### pnt = (x0, y0, ssdo.defaultZ) #### Create and Populate New Feature #### rowResult = [pnt, count] rowsOut.insertRow(rowResult) numUnique += 1 ARCPY.SetProgressorPosition() #### Clean Up #### del rowsOut, gaTable return countFieldNameOut, maxCount, N, numUnique
def collectEvents(ssdo, outputFC): """This utility converts event data into weighted point data by dissolving all coincident points into unique points with a new count field that contains the number of original features at that location. INPUTS: inputFC (str): path to the input feature class outputFC (str): path to the input feature class """ #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Validate Output Workspace #### ERROR.checkOutputPath(outputFC) #### True Centroid Warning For Non-Point FCs #### if ssdo.shapeType.upper() != "POINT": ARCPY.AddIDMessage("WARNING", 1021) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.inputFC, spatRef=ssdo.spatialRefString) #### Assure Enough Observations #### cnt = UTILS.getCount(ssdo.inputFC) ERROR.errorNumberOfObs(cnt, minNumObs=4) N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs=4) #### Process Any Bad Records Encountered #### numBadRecs = cnt - N if numBadRecs: badRecs = WU.parseGAWarnings(gaTable.warnings) if not ssdo.silentWarnings: ERROR.reportBadRecords(cnt, numBadRecs, badRecs, label=ssdo.oidName) #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(0.0, 0, "euclidean") #### Create Output Feature Class #### outPath, outName = OS.path.split(outputFC) try: DM.CreateFeatureclass(outPath, outName, "POINT", "", ssdo.mFlag, ssdo.zFlag, ssdo.spatialRefString) except: ARCPY.AddIDMessage("ERROR", 210, outputFC) raise SystemExit() #### Add Count Field #### countFieldNameOut = ARCPY.ValidateFieldName(countFieldName, outPath) UTILS.addEmptyField(outputFC, countFieldNameOut, "LONG") fieldList = ["SHAPE@", countFieldNameOut] #### Set Insert Cursor #### rowsOut = DA.InsertCursor(outputFC, fieldList) #### Set Progressor for Calculation #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84007), 0, N, 1) #### ID List to Search #### rowsIN = range(N) maxCount = 0 numUnique = 0 for row in rowsIN: #### Get Row Coords #### rowInfo = gaTable[row] x0, y0 = rowInfo[1] count = 1 #### Search For Exact Coord Match #### gaSearch.search_by_idx(row) for nh in gaSearch: count += 1 rowsIN.remove(nh.idx) ARCPY.SetProgressorPosition() #### Keep Track of Max Count #### maxCount = max([count, maxCount]) #### Create Output Point #### pnt = (x0, y0, ssdo.defaultZ) #### Create and Populate New Feature #### rowResult = [pnt, count] rowsOut.insertRow(rowResult) numUnique += 1 ARCPY.SetProgressorPosition() #### Clean Up #### del rowsOut, gaTable return countFieldNameOut, maxCount, N, numUnique
def construct(self): """Constructs the neighborhood structure for each feature and dispatches the appropriate values for the calculation of the statistic.""" #### Shorthand Attributes #### ssdo = self.ssdo varName = self.varName concept = self.concept gaConcept = concept.lower() threshold = self.threshold exponent = self.exponent wType = self.wType rowStandard = self.rowStandard numObs = self.numObs master2Order = self.master2Order masterField = ssdo.masterField weightsFile = self.weightsFile #### Check That All Input Values are Positive #### if NUM.sum(self.y < 0.0) != 0: ARCPY.AddIDMessage("Error", 915) raise SystemExit() #### Assure that Variance is Larger than Zero #### yVar = NUM.var(self.y) if NUM.isnan(yVar) or yVar <= 0.0: ARCPY.AddIDMessage("Error", 906) raise SystemExit() #### Create Base Data Structures/Variables #### self.numer = 0.0 self.denom = 0.0 self.rowSum = NUM.zeros(numObs) self.colSum = NUM.zeros(numObs) self.ySum = 0.0 self.y2Sum = 0.0 self.y3Sum = 0.0 self.y4Sum = 0.0 self.s0 = 0 self.s1 = 0 self.wij = {} #### Set Neighborhood Structure Type #### if self.weightsFile: if self.swmFileBool: #### Open Spatial Weights and Obtain Chars #### swm = WU.SWMReader(weightsFile) N = swm.numObs rowStandard = swm.rowStandard #### Check to Assure Complete Set of Weights #### if numObs > N: ARCPY.AddIDMessage("Error", 842, numObs, N) raise SystemExit() #### Check if Selection Set #### isSubSet = False if numObs < N: isSubSet = True iterVals = xrange(N) else: #### Warning for GWT with Bad Records/Selection #### if ssdo.selectionSet or ssdo.badRecords: ARCPY.AddIDMessage("WARNING", 1029) #### Build Weights Dictionary #### weightDict = WU.buildTextWeightDict(weightsFile, master2Order) iterVals = master2Order.iterkeys() N = numObs elif wType in [4, 5]: #### Polygon Contiguity #### if wType == 4: contiguityType = "ROOK" else: contiguityType = "QUEEN" contDict = WU.polygonNeighborDict(ssdo.inputFC, ssdo.oidName, contiguityType = contiguityType) iterVals = master2Order.keys() N = numObs else: gaTable = ssdo.gaTable gaSearch = GAPY.ga_nsearch(gaTable) if wType == 7: #### Zone of Indiff, All Related to All #### gaSearch.init_nearest(threshold, numObs, gaConcept) else: #### Inverse and Fixed Distances #### gaSearch.init_nearest(threshold, 0, gaConcept) iterVals = xrange(numObs) N = numObs neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = wType, exponent = exponent, row_standard = rowStandard) #### Create Progressor #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84007), 0, N, 1) #### Create Neighbor Info Class #### ni = WU.NeighborInfo(masterField) #### Calculation For Each Feature #### for i in iterVals: if self.swmFileBool: #### Using SWM File #### info = swm.swm.readEntry() masterID = info[0] if master2Order.has_key(masterID): rowInfo = WU.getWeightsValuesSWM(info, master2Order, self.y, rowStandard = rowStandard, isSubSet = isSubSet) includeIt = True else: includeIt = False elif self.weightsFile and not self.swmFileBool: #### Text Weights #### masterID = i includeIt = True rowInfo = WU.getWeightsValuesText(masterID, master2Order, weightDict, self.y) elif wType in [4, 5]: #### Polygon Contiguity #### masterID = i includeIt = True rowInfo = WU.getWeightsValuesCont(masterID, master2Order, contDict, self.y, rowStandard = rowStandard) else: #### Distance Based #### masterID = gaTable[i][0] includeIt = True rowInfo = WU.getWeightsValuesOTF(neighWeights, i, self.y) #### Subset Boolean for SWM File #### if includeIt: #### Parse Row Info #### orderID, yiVal, nhIDs, nhVals, weights = rowInfo #### Assure Neighbors Exist After Selection #### nn, nhIDs, nhVals, weights = ni.processInfo(masterID, nhIDs, nhVals, weights) if nn: #### Process Feature Contribution to General G #### self.processRow(orderID, yiVal, nhIDs, nhVals, weights) #### Reset Progessor #### ARCPY.SetProgressorPosition() #### Clean Up #### if self.swmFileBool: swm.close() #### Report on Features with No Neighbors #### ni.reportNoNeighbors() #### Report on Features with Large Number of Neighbors #### ni.reportWarnings() ni.reportMaximums() self.neighInfo = ni
def unweightedCalc(self): """Performs unweighted k-function.""" #### Attribute Shortcuts #### ssdo = self.ssdo reduce = self.reduce simulate = self.simulate ripley = self.ripley if reduce: studyArea2Use = self.reduceArea else: studyArea2Use = self.studyArea self.ld = COLL.defaultdict(float) if self.permutations: self.ldMin = COLL.defaultdict(float) self.ldMax = COLL.defaultdict(float) for order in self.cutoffOrder: self.ldMin[order] = 99999999999. permsPlus = self.permutations + 1 for perm in xrange(0, permsPlus): #### Permutation Progressor #### pmsg = ARCPY.GetIDMessage(84184) progressMessage = pmsg.format(perm, permsPlus) ARCPY.SetProgressor("default", progressMessage) #### Permutate the XY #### if perm != 0: self.permutateTable() gaSearch = GAPY.ga_nsearch(self.kTable) gaSearch.init_nearest(self.stepMax, 0, "euclidean") N = len(self.kTable) numIDs = len(self.ids) kij = COLL.defaultdict(float) for i in xrange(N): row = self.kTable[i] id0 = row[0] if id0 in self.ids: x0,y0 = row[1] gaSearch.search_by_idx(i) for nh in gaSearch: neighInfo = self.kTable[nh.idx] nhID = neighInfo[0] x1,y1 = neighInfo[1] dist = WU.euclideanDistance(x0,x1,y0,y1) if ripley: value = self.returnRipley(id0, dist) else: value = 1.0 for order in self.reverseOrder: cutoff = self.cutoffs[order] if dist > cutoff: break kij[order] += value ARCPY.SetProgressorPosition() #### Calculate Stats USing Dictionaries #### weightSumVal = numIDs * (numIDs - 1.0) denom = NUM.pi * weightSumVal for order in self.cutoffOrder: res = kij[order] numer = res * studyArea2Use permResult = NUM.sqrt( (numer/denom) ) if perm: self.ldMin[order] = min(self.ldMin[order], permResult) self.ldMax[order] = max(self.ldMax[order], permResult) else: self.ld[order] = permResult
def distance2SWM(inputFC, swmFile, masterField, fixed = 0, concept = "EUCLIDEAN", exponent = 1.0, threshold = None, kNeighs = 1, rowStandard = True): """Creates a sparse spatial weights matrix (SWM) based on k-nearest neighbors. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. fixed (boolean): fixed (1) or inverse (0) distance? concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN exponent {float, 1.0}: distance decay threshold {float, None}: distance threshold kNeighs (int): number of neighbors to return rowStandard {bool, True}: row standardize weights? """ #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Read Data #### ssdo.obtainDataGA(masterField, minNumObs = 2) N = ssdo.numObs gaTable = ssdo.gaTable if fixed: wType = 1 else: wType = 0 #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Set the Distance Threshold #### concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) if threshold == None: threshold, avgDist = WU.createThresholdDist(ssdo, concept = concept) #### Assures that the Threshold is Appropriate #### gaExtent = UTILS.get92Extent(ssdo.extent) threshold, maxSet = WU.checkDistanceThreshold(ssdo, threshold, weightType = wType) #### If the Threshold is Set to the Max #### #### Set to Zero for Script Logic #### if maxSet: #### All Locations are Related #### threshold = SYS.maxint if N > 500: ARCPY.AddIDMessage("Warning", 717) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N and fixed: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create Distance/k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(threshold, kNeighs, gaConcept) neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = wType, exponent = exponent, row_standard = False) #### Set Progressor for Weights Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = wType, distanceMethod = concept, exponent = exponent, threshold = threshold) #### Unique Master ID Dictionary #### masterDict = {} #### Unique Master ID Dictionary #### masterSet = set([]) for row in xrange(N): masterID = int(gaTable[row][2]) if masterID in masterSet: ARCPY.AddIDMessage("Error", 644, masterField) ARCPY.AddIDMessage("Error", 643) raise SystemExit() else: masterSet.add(masterID) neighs, weights = neighWeights[row] neighs = [ gaTable[nh][2] for nh in neighs ] #### Add Spatial Weights Matrix Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() swmWriter.close() del gaTable #### Report Warning/Max Neighbors #### swmWriter.reportNeighInfo() #### Add Linear/Angular Unit (Distance Based Only) #### distanceOut = ssdo.distanceInfo.outputString distanceOut = [ARCPY.GetIDMessage(84344).format(distanceOut)] #### Report Spatial Weights Summary #### swmWriter.report(additionalInfo = distanceOut) #### Report SWM File is Large #### swmWriter.reportLargeSWM()
def delaunay2SWM(inputFC, swmFile, masterField, rowStandard = True): """Creates a sparse spatial weights matrix (SWM) based on Delaunay Triangulation. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. rowStandard {bool, True}: row standardize weights? """ #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.catPath, [masterField], spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 2) #### Process any bad records encountered #### numBadRecs = cnt - N if numBadRecs: badRecs = WU.parseGAWarnings(gaTable.warnings) err = ERROR.reportBadRecords(cnt, numBadRecs, badRecs, label = ssdo.oidName) #### Create Delaunay Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_delaunay() neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = 1, row_standard = False) #### Set Progressor for Weights Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = 3) #### Unique Master ID Dictionary #### masterSet = set([]) for row in xrange(N): masterID = int(gaTable[row][2]) if masterID in masterSet: ARCPY.AddIDMessage("Error", 644, masterField) ARCPY.AddIDMessage("Error", 643) raise SystemExit() else: masterSet.add(masterID) neighs, weights = neighWeights[row] neighs = [ gaTable[nh][2] for nh in neighs ] #### Add Spatial Weights Matrix Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() #### Clean Up #### swmWriter.close() del gaTable #### Report if Any Features Have No Neighbors #### swmWriter.reportNoNeighbors() #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM()
def spaceTime2SWM(inputFC, swmFile, masterField, concept = "EUCLIDEAN", threshold = None, rowStandard = True, timeField = None, timeType = None, timeValue = None): """ inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN threshold {float, None}: distance threshold rowStandard {bool, True}: row standardize weights? timeField {str, None}: name of the date-time field timeType {str, None}: ESRI enumeration of date-time intervals timeValue {float, None}: value forward and backward in time """ #### Assure Temporal Parameters are Set #### if not timeField: ARCPY.AddIDMessage("ERROR", 1320) raise SystemExit() if not timeType: ARCPY.AddIDMessage("ERROR", 1321) raise SystemExit() if not timeValue or timeValue <= 0: ARCPY.AddIDMessage("ERROR", 1322) raise SystemExit() #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84001), 0, cnt, 1) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) badIDs = [] #### Create Temporal Hash #### timeInfo = {} xyCoords = NUM.empty((cnt, 2), float) #### Process Field Values #### fieldList = [masterField, "SHAPE@XY", timeField] try: rows = DA.SearchCursor(ssdo.catPath, fieldList, "", ssdo.spatialRefString) except: ARCPY.AddIDMessage("ERROR", 204) raise SystemExit() #### Add Data to GATable and Time Dictionary #### c = 0 for row in rows: badRow = False #### Assure Masterfield is Valid #### masterID = row[0] if masterID == None or masterID == "": badRow = True #### Assure Date/Time is Valid #### timeStamp = row[-1] if timeStamp == None or timeStamp == "": badRow = True #### Assure Centroid is Valid #### badXY = row[1].count(None) if not badXY: x,y = row[1] xyCoords[c] = (x,y) else: badRow = True #### Process Data #### if not badRow: if timeInfo.has_key(masterID): #### Assure Uniqueness #### ARCPY.AddIDMessage("Error", 644, masterField) ARCPY.AddIDMessage("Error", 643) raise SystemExit() else: #### Fill Date/Time Dict #### startDT, endDT = TUTILS.calculateTimeWindow(timeStamp, timeValue, timeType) timeInfo[masterID] = (timeStamp, startDT, endDT) else: badIDs.append(masterID) #### Set Progress #### c += 1 ARCPY.SetProgressorPosition() #### Clean Up #### del rows #### Get Set of Bad IDs #### numBadObs = len(badIDs) badIDs = list(set(badIDs)) badIDs.sort() badIDs = [ str(i) for i in badIDs ] #### Process any bad records encountered #### if numBadObs: ERROR.reportBadRecords(cnt, numBadObs, badIDs, label = masterField) #### Load Neighbor Table #### gaTable, gaInfo = WU.gaTable(ssdo.inputFC, fieldNames = [masterField, timeField], spatRef = ssdo.spatialRefString) numObs = len(gaTable) xyCoords = xyCoords[0:numObs] #### Set the Distance Threshold #### concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) if threshold == None: #### Set Progressor for Search #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84144)) #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(0.0, 1, gaConcept) neighDist = ARC._ss.NeighborDistances(gaTable, gaSearch) N = len(neighDist) threshold = 0.0 sumDist = 0.0 #### Find Maximum Nearest Neighbor Distance #### for row in xrange(N): dij = neighDist[row][-1][0] if dij > threshold: threshold = dij sumDist += dij ARCPY.SetProgressorPosition() #### Increase For Rounding Error #### threshold = threshold * 1.0001 avgDist = sumDist / (N * 1.0) #### Add Linear/Angular Units #### thresholdStr = ssdo.distanceInfo.printDistance(threshold) ARCPY.AddIDMessage("Warning", 853, thresholdStr) #### Chordal Default Check #### if ssdo.useChordal: hardMaxExtent = ARC._ss.get_max_gcs_distance(ssdo.spatialRef) if threshold > hardMaxExtent: ARCPY.AddIDMessage("ERROR", 1609) raise SystemExit() #### Clean Up #### del gaSearch #### Create Missing SSDO Info #### extent = UTILS.resetExtent(xyCoords) #### Reset Coordinates for Chordal #### if ssdo.useChordal: sliceInfo = UTILS.SpheroidSlice(extent, ssdo.spatialRef) maxExtent = sliceInfo.maxExtent else: env = UTILS.Envelope(extent) maxExtent = env.maxExtent threshold = checkDistanceThresholdSWM(ssdo, threshold, maxExtent) #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create Distance Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(threshold, 0, gaConcept) neighSearch = ARC._ss.NeighborSearch(gaTable, gaSearch) #### Set Progressor for Weights Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, numObs, 1) #### Initialize Spatial Weights Matrix File #### swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, numObs, rowStandard, inputFC = inputFC, wType = 9, distanceMethod = concept, threshold = threshold, timeField = timeField, timeType = timeType, timeValue = timeValue) for row in xrange(numObs): masterID = gaTable[row][2] #### Get Date/Time Info #### dt0, startDT0, endDT0 = timeInfo[masterID] nhs = neighSearch[row] neighs = [] weights = [] for nh in nhs: #### Search Through Spatial Neighbors #### neighID = gaTable[nh][2] #### Get Date/Time Info #### dt1, startDT1, endDT1 = timeInfo[neighID] #### Filter Based on Date/Time #### insideTimeWindow = TUTILS.isTimeNeighbor(startDT0, endDT0, dt1) if insideTimeWindow: neighs.append(neighID) weights.append(1.0) #### Add Spatial Weights Matrix Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() swmWriter.close() del gaTable #### Report Warning/Max Neighbors #### swmWriter.reportNeighInfo() #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM()
def kNearest2SWM(inputFC, swmFile, masterField, concept = "EUCLIDEAN", kNeighs = 1, rowStandard = True): """Creates a sparse spatial weights matrix (SWM) based on k-nearest neighbors. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN kNeighs {int, 1}: number of neighbors to return rowStandard {bool, True}: row standardize weights? """ #### Assure that kNeighs is Non-Zero #### if kNeighs <= 0: ARCPY.AddIDMessage("ERROR", 976) raise SystemExit() #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.catPath, [masterField], spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 2) #### Process any bad records encountered #### numBadRecs = cnt - N if numBadRecs: badRecs = WU.parseGAWarnings(gaTable.warnings) err = ERROR.reportBadRecords(cnt, numBadRecs, badRecs, label = ssdo.oidName) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) gaSearch.init_nearest(0.0, kNeighs, gaConcept) neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = 1, row_standard = False) #### Set Progressor for Weights Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = 2, distanceMethod = concept, numNeighs = kNeighs) #### Unique Master ID Dictionary #### masterSet = set([]) for row in xrange(N): masterID = int(gaTable[row][2]) if masterID in masterSet: ARCPY.AddIDMessage("Error", 644, masterField) ARCPY.AddIDMessage("Error", 643) raise SystemExit() else: masterSet.add(masterID) neighs, weights = neighWeights[row] neighs = [ gaTable[nh][2] for nh in neighs ] #### Add Spatial Weights Matrix Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() swmWriter.close() del gaTable #### Report Warning/Max Neighbors #### swmWriter.reportNeighInfo() #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM()
def polygon2SWM(inputFC, swmFile, masterField, concept = "EUCLIDEAN", kNeighs = 0, rowStandard = True, contiguityType = "ROOK"): """Creates a sparse spatial weights matrix (SWM) based on polygon contiguity. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN kNeighs {int, 0}: number of neighbors to return (1) rowStandard {bool, True}: row standardize weights? contiguityType {str, Rook}: {Rook = Edges Only, Queen = Edges/Vertices} NOTES: (1) kNeighs is used if polygon is not contiguous. E.g. Islands """ #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.catPath, [masterField], spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 2) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create Nearest Neighbor Search Type For Islands #### gaSearch = GAPY.ga_nsearch(gaTable) concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) gaSearch.init_nearest(0.0, kNeighs, gaConcept) if kNeighs > 0: forceNeighbor = True neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = 1, row_standard = False) else: forceNeighbor = False neighSearch = None #### Create Polygon Neighbors #### polyNeighborDict = WU.polygonNeighborDict(inputFC, masterField, contiguityType = contiguityType) #### Write Poly Neighbor List (Dict) #### #### Set Progressor for SWM Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### if contiguityType == "ROOK": wType = 4 else: wType = 5 swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = wType, distanceMethod = concept, numNeighs = kNeighs) #### Keep Track of Polygons w/o Neighbors #### islandPolys = [] #### Write Polygon Contiguity to SWM File #### for row in xrange(N): rowInfo = gaTable[row] oid = rowInfo[0] masterID = rowInfo[2] neighs = polyNeighborDict[masterID] if neighs: weights = [ 1. for nh in neighs ] isIsland = False else: isIsland = True islandPolys.append(oid) weights = [] #### Get Nearest Neighbor Based On Centroid Distance #### if isIsland and forceNeighbor: neighs, weights = neighWeights[row] neighs = [ gaTable[nh][2] for nh in neighs ] #### Add Weights Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() #### Report on Features with No Neighbors #### countIslands = len(islandPolys) if countIslands: islandPolys.sort() if countIslands > 30: islandPolys = islandPolys[0:30] ERROR.warningNoNeighbors(N, countIslands, islandPolys, ssdo.oidName, forceNeighbor = forceNeighbor, contiguity = True) #### Clean Up #### swmWriter.close() del gaTable #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM() del polyNeighborDict
def construct(self): """Constructs the neighborhood structure for each feature and dispatches the appropriate values for the calculation of the statistic.""" #### Shorthand Attributes #### ssdo = self.ssdo varName = self.varName concept = self.concept gaConcept = concept.lower() threshold = self.threshold exponent = self.exponent wType = self.wType rowStandard = self.rowStandard numObs = self.numObs master2Order = self.master2Order masterField = ssdo.masterField weightsFile = self.weightsFile #### Assure that Variance is Larger than Zero #### yVar = NUM.var(self.y) if NUM.isnan(yVar) or yVar <= 0.0: ARCPY.AddIDMessage("Error", 906) raise SystemExit() #### Create Deviation Variables #### self.yBar = NUM.mean(self.y) self.yDev = self.y - self.yBar self.nm1 = numObs - 1. self.nm2 = numObs - 2. self.nm12 = self.nm1 * self.nm2 yDev2 = self.yDev**2.0 yDev2Norm = yDev2 / self.nm1 self.yDev2NormSum = sum(yDev2Norm) yDev4 = self.yDev**4.0 yDev4Norm = yDev4 / self.nm1 yDev4NormSum = sum(yDev4Norm) self.b2i = yDev4NormSum / (self.yDev2NormSum**2.0) #### Create Base Data Structures/Variables #### self.li = NUM.zeros(numObs) self.ei = NUM.zeros(numObs) self.vi = NUM.zeros(numObs) self.zi = NUM.zeros(numObs) self.pVals = NUM.ones(numObs) if self.permutations: self.pseudoPVals = NUM.ones(numObs) self.moranInfo = {} #### Keep Track of Features with No Neighbors #### self.idsNoNeighs = [] #### Set Neighborhood Structure Type #### if self.weightsFile: if self.swmFileBool: #### Open Spatial Weights and Obtain Chars #### swm = WU.SWMReader(weightsFile) N = swm.numObs rowStandard = swm.rowStandard self.swm = swm #### Check to Assure Complete Set of Weights #### if numObs > N: ARCPY.AddIDMessage("Error", 842, numObs, N) raise SystemExit() #### Check if Selection Set #### isSubSet = False if numObs < N: isSubSet = True iterVals = xrange(N) else: #### Warning for GWT with Bad Records/Selection #### if ssdo.selectionSet or ssdo.badRecords: ARCPY.AddIDMessage("WARNING", 1029) #### Build Weights Dictionary #### weightDict = WU.buildTextWeightDict(weightsFile, master2Order) iterVals = master2Order.keys() N = numObs elif wType in [4, 5]: #### Polygon Contiguity #### if wType == 4: contiguityType = "ROOK" else: contiguityType = "QUEEN" contDict = WU.polygonNeighborDict(ssdo.inputFC, ssdo.oidName, contiguityType = contiguityType) iterVals = master2Order.keys() N = numObs else: gaTable = ssdo.gaTable gaSearch = GAPY.ga_nsearch(gaTable) if wType == 7: #### Zone of Indiff, All Related to All #### gaSearch.init_nearest(threshold, numObs, gaConcept) else: #### Inverse and Fixed Distances #### gaSearch.init_nearest(threshold, 0, gaConcept) iterVals = range(numObs) N = numObs neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = wType, exponent = exponent, row_standard = rowStandard) #### Create Progressor #### msg = ARCPY.GetIDMessage(84007) if self.permutations: msg += ": Using Permutations = %i" % self.permutations ARCPY.SetProgressor("step", msg , 0, N, 1) #### Create Neighbor Info Class #### ni = WU.NeighborInfo(masterField) #### Calculation For Each Feature #### for i in iterVals: if self.swmFileBool: #### Using SWM File #### info = swm.swm.readEntry() masterID = info[0] if master2Order.has_key(masterID): rowInfo = WU.getWeightsValuesSWM(info, master2Order, self.yDev, rowStandard = rowStandard, isSubSet = isSubSet) includeIt = True else: includeIt = False elif self.weightsFile and not self.swmFileBool: #### Text Weights #### masterID = i includeIt = True rowInfo = WU.getWeightsValuesText(masterID, master2Order, weightDict, self.yDev) elif wType in [4, 5]: #### Polygon Contiguity #### masterID = i includeIt = True rowInfo = WU.getWeightsValuesCont(masterID, master2Order, contDict, self.yDev, rowStandard = rowStandard) else: #### Distance Based #### masterID = gaTable[i][0] includeIt = True rowInfo = WU.getWeightsValuesOTF(neighWeights, i, self.yDev) #### Subset Boolean for SWM File #### if includeIt: #### Parse Row Info #### orderID, yiDev, nhIDs, nhVals, weights = rowInfo #### Assure Neighbors Exist After Selection #### nn, nhIDs, nhVals, weights = ni.processInfo(masterID, nhIDs, nhVals, weights) if nn: #### Calculate Local I #### self.calculateLI(orderID, yiDev, nhVals, weights) ARCPY.SetProgressorPosition() #### Clean Up #### if self.swmFileBool: swm.close() #### Report on Features with No Neighbors #### ni.reportNoNeighbors() self.setNullValues(ni.idsNoNeighs) #### Report on Features with Large Number of Neighbors #### ni.reportWarnings() ni.reportMaximums() self.neighInfo = ni #### Set p-values for Gi Bins #### if self.permutations: #### Use Pseudo p-values #### pv = self.pseudoPVals else: #### Use Traditional p-values #### pv = self.pVals #### Calculate FDR and Moran Bins #### toolMSG = ARCPY.GetIDMessage(84474) if self.applyFDR: #### Set Bins Using FDR #### msg = ARCPY.GetIDMessage(84472).format(toolMSG) ARCPY.SetProgressor("default", msg) fdrBins = STATS.fdrTransform(pv, self.li) self.moranBins = STATS.moranBinFromPVals(pv, self.moranInfo, fdrBins = fdrBins) else: msg = ARCPY.GetIDMessage(84473).format(toolMSG) ARCPY.SetProgressor("default", msg) self.moranBins = STATS.moranBinFromPVals(pv, self.moranInfo)
def construct(self): """Constructs the neighborhood structure for each feature and dispatches the appropriate values for the calculation of the statistic.""" #### Shorthand Attributes #### ssdo = self.ssdo numObs = ssdo.numObs master2Order = ssdo.master2Order masterField = ssdo.masterField concept = self.concept iterVals = range(numObs) rowStandard = self.rowStandard wType = 1 yVar = NUM.var(self.y) if NUM.isnan(yVar) or yVar <= 0.0: ARCPY.AddIDMessage("ERROR", 906) raise SystemExit() #### Create Deviation Variables #### self.yBar = NUM.mean(self.y) self.yDev = self.y - self.yBar #### Create Results Array #### self.giResults = NUM.zeros((self.nIncrements, 6)) #### Run Max Distance and Bin NN #### msgProg = ARCPY.GetIDMessage(84423) self.rowSum = NUM.zeros((numObs, self.nIncrements), float) self.weightVals = NUM.ones((numObs, self.nIncrements), float) self.noNeighs = NUM.zeros((self.nIncrements,), int) self.breaks = COLL.defaultdict(NUM.array) self.numFeatures = NUM.ones((self.nIncrements,), int) * ssdo.numObs self.totalNeighs = NUM.zeros((self.nIncrements,), float) ARCPY.SetProgressor("step", msgProg, 0, ssdo.numObs, 1) if not self.silent: ARCPY.AddMessage("\n" + msgProg) gaSearch = GAPY.ga_nsearch(ssdo.gaTable) gaSearch.init_nearest(self.stepMax, 0, concept.lower()) gaTable = ssdo.gaTable numCalcs = 0 warnThrown = (self.silent == True) or (self.allDefaults == True) self.warnNeighsExceeded = warnThrown self.maxNeighsExceeded = warnThrown self.completed = False nb = ARC._ss.NeighborBins(gaTable, gaSearch, self.cutoffs) c = 0 for counts, breaks in nb: numDists = len(breaks) if numDists: #### Add Warning if Possibly Going to Run out of Memory #### numCalcs += numDists if numCalcs > 20000000 and not warnThrown: if not self.silent: ARCPY.AddIDMessage("WARNING", 1389) warnThrown = True self.breaks[c] = breaks noNeighInd = NUM.where(counts == 0)[0] if len(noNeighInd): for noInd in noNeighInd: self.noNeighs[noInd] += 1 self.numFeatures[noInd] -= 1 if rowStandard: self.weightVals[c] = 1./counts self.rowSum[c] = 1.0 else: self.rowSum[c] = counts * 1.0 self.totalNeighs += counts else: #### Never Included in Spatial Autocorrelation #### for ind in xrange(self.nIncrements): self.noNeighs[ind] += 1 self.numFeatures[ind] -= 1 #### Warn Number of Neighs #### if numDists >= WU.warnNumberOfNeighbors: self.idsWarn.append(self.ssdo.order2Master[c]) if not self.warnNeighsExceeded: ARCPY.AddIDMessage("WARNING", 1420, WU.warnNumberOfNeighbors) self.warnNeighsExceeded = True c += 1 ARCPY.SetProgressorPosition() #### Report if All Features Have No Neighbors #### self.s0 = self.rowSum.sum(0) noNeighsAllInd = NUM.where(self.s0 == 0.0)[0] if len(noNeighsAllInd): cutoffNoNeighs = self.cutoffs[noNeighsAllInd] dist = [UTILS.formatValue(i, "%0.2f") for i in cutoffNoNeighs] distanceStr = ", ".join(dist) ARCPY.AddIDMessage("ERROR", 1388, distanceStr) raise SystemExit() #### Report on Features with Large Number of Neighbors #### throwWarnings = (self.silent == True) or (self.allDefaults == True) if not throwWarnings: self.reportWarnings() self.reportMaximums() #### Calculate Statistic #### msgProg = ARCPY.GetIDMessage(84280) ARCPY.SetProgressor("step", msgProg, 0, ssdo.numObs, 1) if not self.silent: ARCPY.AddMessage("\n" + msgProg) self.numer = NUM.zeros((self.nIncrements,), float) self.denom = NUM.sum(self.yDev**2.0) self.s1 = NUM.zeros((self.nIncrements,), float) self.colSum = NUM.zeros((numObs, self.nIncrements), float) for i in xrange(ssdo.numObs): if self.breaks.has_key(i): binIndices = self.breaks[i] yDev0 = self.yDev[i] gaSearch.search_by_idx(i) w0 = self.weightVals[i] c = 0 for nh in gaSearch: start = binIndices[c] yDev1 = self.yDev[nh.idx] w1 = self.weightVals[nh.idx][start:] w0c = w0[start:] values = (yDev1 * w1) * yDev0 self.numer[start:] += values self.s1[start:] += ((w0c + w1)**2.0) self.colSum[i][start:] += w1 c += 1 ARCPY.SetProgressorPosition() #### Calculate Moran's I #### self.calculate() #### Pack Results #### for ind in self.cutoffOrder: res = (self.cutoffs[ind], self.gi[ind], self.ei[ind], self.vi[ind], self.zi[ind], self.pVal[ind]) self.giResults[ind] = res if not self.silent: ARCPY.AddMessage("\n") #### Calculate Peak Distances #### ziResults = [ value[4] for value in self.giResults ] firstPeakInd, maxPeakInd = UTILS.returnPeakIndices(ziResults, levelFilter = 1.65) #### Add Warning if No Valid Peaks are Found #### if firstPeakInd == None and maxPeakInd == None: if not self.silent: ARCPY.AddIDMessage("WARNING", 1284) if firstPeakInd == None: self.firstPeakDistance = None self.firstPeakZ = None else: self.firstPeakDistance = self.cutoffs[firstPeakInd] self.firstPeakZ = self.zi[firstPeakInd] if maxPeakInd == None: self.maxPeakDistance = None self.maxPeakZ = None else: self.maxPeakDistance = self.cutoffs[maxPeakInd] self.maxPeakZ = self.zi[maxPeakInd] self.firstPeakInd = firstPeakInd self.maxPeakInd = maxPeakInd self.completed = True return True
def polygon2SWM(inputFC, swmFile, masterField, concept = "EUCLIDEAN", kNeighs = 0, rowStandard = True, contiguityType = "ROOK"): """Creates a sparse spatial weights matrix (SWM) based on polygon contiguity. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN kNeighs {int, 0}: number of neighbors to return (1) rowStandard {bool, True}: row standardize weights? contiguityType {str, Rook}: {Rook = Edges Only, Queen = Edges/Vertices} NOTES: (1) kNeighs is used if polygon is not contiguous. E.g. Islands """ #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.catPath, [masterField], spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 2) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create Nearest Neighbor Search Type For Islands #### if kNeighs > 0: gaSearch = GAPY.ga_nsearch(gaTable) concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) gaSearch.init_nearest(0.0, kNeighs, gaConcept) forceNeighbor = True neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = 1, row_standard = False) else: forceNeighbor = False neighSearch = None #### Create Polygon Neighbors #### polyNeighborDict = WU.polygonNeighborDict(inputFC, masterField, contiguityType = contiguityType) #### Write Poly Neighbor List (Dict) #### #### Set Progressor for SWM Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### if contiguityType == "ROOK": wType = 4 else: wType = 5 swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = wType, distanceMethod = concept, numNeighs = kNeighs) #### Keep Track of Polygons w/o Neighbors #### islandPolys = [] #### Write Polygon Contiguity to SWM File #### for row in xrange(N): rowInfo = gaTable[row] oid = rowInfo[0] masterID = rowInfo[2] neighs = polyNeighborDict[masterID] nn = len(neighs) if forceNeighbor: if nn < kNeighs: #### Only Force KNN If Specified & Contiguity is Less #### islandPolys.append(oid) flag = True knnNeighs, knnWeights = neighWeights[row] c = 0 while flag: try: neighID = gaTable[knnNeighs[c]][2] if neighID not in neighs: neighs.append(neighID) nn += 1 if nn == kNeighs: flag = False c += 1 except: flag = False weights = NUM.ones(nn) #### Add Weights Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() #### Report on Features with No Neighbors #### countIslands = len(islandPolys) if countIslands: islandPolys.sort() if countIslands > 30: islandPolys = islandPolys[0:30] ERROR.warningNoNeighbors(N, countIslands, islandPolys, ssdo.oidName, forceNeighbor = forceNeighbor, contiguity = True) #### Clean Up #### swmWriter.close() del gaTable #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM() del polyNeighborDict
def stCollectByKNN(ssdo, timeField, outputFC, inSpan, inDistance): """ This method applied Jacquez Space-Time K-NN to convert event data into weighted point data by dissolving all coincident points in space and time into unique points with a new count field that contains the number of original features at that location and time span. INPUTS: ssdo (obj): SSDataObject from input timeField (str): Date/Time field name in input feature outputFC (str): path to the output feature class inSpan (int): value of temporal units within the same time bin inDistance (int): value of spatial units considered as spatial neighbors OUTPUTS: Create new collected point feature """ #### Read raw time data #### timeData = ssdo.fields[timeField].data #### Convert temporal unit #### time = NUM.array(timeData, dtype='datetime64[s]').astype('datetime64[D]') #### Find Start Time #### startTime = time.min() #### Create Bin for Space and Time #### timeBin = (time - startTime) / inSpan numObs = ssdo.numObs #### Create Sudo-fid to Find K-NN in Space and Time fid = [i for i in xrange(numObs)] #### Validate Output Workspace #### ERROR.checkOutputPath(outputFC) #### True Centroid Warning For Non-Point FCs #### if ssdo.shapeType.upper() != "POINT": ARCPY / AddIDMessage("WARNING", 1021) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.inputFC, spatRef=ssdo.spatialRefString) #### Assure Enough Observations #### cnt = UTILS.getCount(ssdo.inputFC) ERROR.errorNumberOfObs(cnt, minNumObs=4) N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs=4) #### Process Any Bad Records Encountered #### numBadRecs = cnt - N if numBadRecs: badRecs = WU.parseGAWarnings(gaTable.warnings) if not ssdo.silentWarnings: ERROR.reportBadRecords(cnt, numBadRecs, badRecs, label=ssdo.oidName) #### Create Output Feature Class #### outPath, outName = OS.path.split(outputFC) try: DM.CreateFeatureclass(outPath, outName, "POINT", "", ssdo.mFlag, ssdo.zFlag, ssdo.spatialRefString) except: ARCPY.AddIDMessage("ERROR", 210, outputFC) raise SystemExit() #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(inDistance, 0, "euclidean") #### Add Count Field #### countFieldNameOut = ARCPY.ValidateFieldName(countFieldName, outPath) timeFieldNameOut = ARCPY.ValidateFieldName(timeFieldName, outPath) UTILS.addEmptyField(outputFC, countFieldNameOut, "LONG") UTILS.addEmptyField(outputFC, timeFieldNameOut, "DATE") fieldList = ["SHAPE@", countFieldNameOut, timeFieldNameOut] #### Set Insert Cursor #### rowsOut = DA.InsertCursor(outputFC, fieldList) #### Detect S-T K-NN by Space and Time Bin #### duplicateList = [] for record in fid: kNNList = [record] if record not in duplicateList: for pair in fid: if pair != record: gaSearch.search_by_idx(record) for nh in gaSearch: if timeBin[record] == timeBin[pair]: kNNList.append(nh.idx) duplicateList.append(nh.idx) #### Create and Populate New Feature #### kNNList = list(set(kNNList)) count = len(kNNList) dt = time[record] x0 = ssdo.xyCoords[kNNList, 0].mean() y0 = ssdo.xyCoords[kNNList, 1].mean() pnt = (x0, y0, ssdo.defaultZ) rowResult = [pnt, count, dt] rowsOut.insertRow(rowResult) ARCPY.SetProgressorPosition() #### Clean Up #### del rowsOut, timeBin, kNNList, duplicateList return countFieldNameOut
def weightedCalc(self): """Performs weighted k-function.""" #### Attribute Shortcuts #### ssdo = self.ssdo reduce = self.reduce simulate = self.simulate ripley = self.ripley numIDs = len(self.ids) if reduce: studyArea2Use = self.reduceArea else: studyArea2Use = self.studyArea if simulate: simOrder = [] for simKey, origID in self.simDict.iteritems(): simOrder.append(self.weightDict[origID]) self.ld = COLL.defaultdict(float) if self.permutations: self.ldMin = COLL.defaultdict(float) self.ldMax = COLL.defaultdict(float) for order in self.cutoffOrder: self.ldMin[order] = 99999999999. permsPlus = self.permutations + 1 for perm in xrange(0, permsPlus): #### Permutation Progressor #### pmsg = ARCPY.GetIDMessage(84184) progressMessage = pmsg.format(perm, permsPlus) ARCPY.SetProgressor("default", progressMessage) gaSearch = GAPY.ga_nsearch(self.kTable) gaSearch.init_nearest(self.stepMax, 0, "euclidean") N = len(self.kTable) #### Permutate Weights #### if perm: weights = RAND.permutation(weights) else: weights = self.weightVals if simulate: simWeights = NUM.take(self.weightVals, simOrder) #### Set Statistic Variables #### weightSumVal = 0.0 kij = COLL.defaultdict(float) start = 0 #### Loop Over Entire Table #### for i in xrange(N): row = self.kTable[i] id0 = row[0] #### Calculate For Inside IDs #### if id0 in self.ids: x0,y0 = row[1] weightInd0 = self.weightDict[id0] w0 = weights[weightInd0] #### Weight Sum Resolution #### weightSumVal += (NUM.sum(w0 * weights)) - w0**2.0 if simulate: weightSumVal += (w0 * simWeights).sum() #### Neighbors Within Largest Distance #### gaSearch.search_by_idx(i) for nh in gaSearch: neighInfo = self.kTable[nh.idx] id1 = neighInfo[0] x1,y1 = neighInfo[1] #### Input or Simulated Point #### try: weightInd1 = self.weightDict[id1] except: origID = self.simDict[id1] weightInd1 = self.weightDict[origID] #### Process Neighbor Pair #### w1 = weights[weightInd1] dist = WU.euclideanDistance(x0,x1,y0,y1) if ripley: value = self.returnRipley(id0, dist) else: value = 1.0 value = w0 * (w1 * value) #### Add To Cutoffs #### for order in self.reverseOrder: cutoff = self.cutoffs[order] if dist > cutoff: break kij[order] += value ARCPY.SetProgressorPosition() #### Calculate Stats USing Dictionaries #### denom = NUM.pi * weightSumVal for order in self.cutoffOrder: res = kij[order] numer = res * studyArea2Use permResult = NUM.sqrt( (numer/denom) ) if perm: self.ldMin[order] = min(self.ldMin[order], permResult) self.ldMax[order] = max(self.ldMax[order], permResult) else: self.ld[order] = permResult
def calculateDistanceBand(inputFC, kNeighs, concept="EUCLIDEAN"): """Provides the minimum, maximum and average distance from a set of features based on a given neighbor count. INPUTS: inputFC (str): path to the input feature class kNeighs (int): number of neighbors to return concept {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN distance """ #### Assure that kNeighs is Non-Zero #### if kNeighs <= 0: ARCPY.AddIDMessage("ERROR", 976) raise SystemExit() #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, useChordal=True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs=2) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(inputFC, spatRef=ssdo.spatialRefString) #### Assure Enough Observations #### N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs=2) #### Process Any Bad Records Encountered #### numBadRecs = cnt - N if numBadRecs: badRecs = WU.parseGAWarnings(gaTable.warnings) err = ERROR.reportBadRecords(cnt, numBadRecs, badRecs, label=ssdo.oidName) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaConcept = concept.lower() gaSearch.init_nearest(0.0, kNeighs, gaConcept) neighDist = ARC._ss.NeighborDistances(gaTable, gaSearch) #### Set Progressor for Weights Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84007), 0, N, 1) distances = NUM.empty((N, ), float) for row in xrange(N): distances[row] = neighDist[row][-1].max() ARCPY.SetProgressorPosition() #### Calculate and Report #### minDist = distances.min() avgDist = distances.mean() maxDist = distances.max() if ssdo.useChordal: hardMaxExtent = ARC._ss.get_max_gcs_distance(ssdo.spatialRef) if maxDist > hardMaxExtent: ARCPY.AddIDMessage("ERROR", 1609) raise SystemExit() minDistOut = LOCALE.format("%0.6f", minDist) avgDistOut = LOCALE.format("%0.6f", avgDist) maxDistOut = LOCALE.format("%0.6f", maxDist) #### Create Output Text Table #### header = ARCPY.GetIDMessage(84171) row1 = [ARCPY.GetIDMessage(84165).format(kNeighs), minDistOut] row2 = [ARCPY.GetIDMessage(84166).format(kNeighs), avgDistOut] row3 = [ARCPY.GetIDMessage(84167).format(kNeighs), maxDistOut] total = [row1, row2, row3] tableOut = UTILS.outputTextTable(total, header=header, pad=1) #### Add Linear/Angular Unit #### distanceOut = ssdo.distanceInfo.outputString distanceMeasuredStr = ARCPY.GetIDMessage(84344).format(distanceOut) tableOut += "\n%s\n" % distanceMeasuredStr #### Report Text Output #### ARCPY.AddMessage(tableOut) #### Set Derived Output #### ARCPY.SetParameterAsText(3, minDist) ARCPY.SetParameterAsText(4, avgDist) ARCPY.SetParameterAsText(5, maxDist) #### Clean Up #### del gaTable
def construct(self): """Constructs the neighborhood structure for each feature and dispatches the appropriate values for the calculation of the statistic.""" #### Shorthand Attributes #### ssdo = self.ssdo varName = self.varName concept = self.concept gaConcept = concept.lower() threshold = self.threshold exponent = self.exponent wType = self.wType numObs = self.numObs master2Order = self.master2Order masterField = ssdo.masterField weightsFile = self.weightsFile potentialField = self.potentialField #### Assure that Variance is Larger than Zero #### yVar = NUM.var(self.y) if NUM.isnan(yVar) or yVar <= 0.0: ARCPY.AddIDMessage("ERROR", 906) raise SystemExit() #### Create Summed Variables #### self.intRange = NUM.arange(numObs) self.floatN = self.numObs * 1.0 ySum = self.y.sum() ySum2 = (self.y**2.0).sum() self.yBar = ySum / self.floatN self.S = NUM.sqrt((ySum2 / self.floatN) - self.yBar**2.0) self.nm1 = self.floatN - 1.0 #### Create Base Data Structures/Variables #### self.gi = NUM.zeros(numObs) self.pVals = NUM.ones(numObs) if self.permutations: self.pseudoPVals = NUM.ones(numObs) #### Set Neighborhood Structure Type #### if self.weightsFile: if self.swmFileBool: #### Open Spatial Weights and Obtain Chars #### swm = WU.SWMReader(weightsFile) N = swm.numObs rowStandard = swm.rowStandard self.swm = swm #### Check to Assure Complete Set of Weights #### if numObs > N: ARCPY.AddIDMessage("ERROR", 842, numObs, N) raise SystemExit() #### Check if Selection Set #### isSubSet = False if numObs < N: isSubSet = True iterVals = xrange(N) else: #### Warning for GWT with Bad Records/Selection #### if ssdo.selectionSet or ssdo.badRecords: ARCPY.AddIDMessage("WARNING", 1029) #### Build Weights Dictionary #### weightDict = WU.buildTextWeightDict(weightsFile, master2Order) iterVals = master2Order.keys() N = numObs elif wType in [4, 5]: #### Polygon Contiguity #### if wType == 4: contiguityType = "ROOK" else: contiguityType = "QUEEN" contDict = WU.polygonNeighborDict(ssdo.inputFC, ssdo.oidName, contiguityType=contiguityType) iterVals = master2Order.keys() N = numObs else: gaTable = ssdo.gaTable gaSearch = GAPY.ga_nsearch(gaTable) if wType == 7: #### Zone of Indiff, All Related to All #### gaSearch.init_nearest(threshold, numObs, gaConcept) else: #### Inverse and Fixed Distances #### gaSearch.init_nearest(threshold, self.numNeighs, gaConcept) iterVals = range(numObs) N = numObs neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type=wType, exponent=exponent, row_standard=False, include_self=True) #### Create Progressor #### msg = ARCPY.GetIDMessage(84007) if self.permutations: msg += ": Using Permutations = %i" % self.permutations ARCPY.SetProgressor("step", msg, 0, N, 1) #### Create Neighbor Info Class #### ni = WU.NeighborInfo(masterField) #### Calculation For Each Feature #### for i in iterVals: if self.swmFileBool: #### Using SWM File #### info = swm.swm.readEntry() masterID = info[0] if master2Order.has_key(masterID): rowInfo = WU.getWeightsValuesSWM(info, master2Order, self.y, rowStandard=rowStandard, potVals=self.potVals) includeIt = True else: includeIt = False elif self.weightsFile and not self.swmFileBool: #### Text Weights #### masterID = i includeIt = True rowInfo = WU.getWeightsValuesText(masterID, master2Order, weightDict, self.y, potVals=self.potVals, allowSelf=True) elif wType in [4, 5]: #### Polygon Contiguity #### masterID = i includeIt = True rowInfo = WU.getWeightsValuesCont(masterID, master2Order, contDict, self.y, rowStandard=False, potVals=self.potVals) else: #### Distance Based #### masterID = gaTable[i][0] includeIt = True rowInfo = WU.getWeightsValuesOTF_Potent( neighWeights, i, self.y, self.potVals) #### Subset Boolean for SWM File #### if includeIt: #### Parse Row Info #### orderID, yiVal, nhIDs, nhVals, weights = rowInfo #### Assure Neighbors Exist After Selection #### nn, nhIDs, nhVals, weights = ni.processInfo( masterID, nhIDs, nhVals, weights) if nn: #### Calculate Local G #### self.calculateGI(orderID, yiVal, nhVals, weights) ARCPY.SetProgressorPosition() #### Clean Up #### if self.swmFileBool: swm.close() #### Report on Features with No Neighbors #### ni.reportNoNeighbors(failAllNoNeighs=False) self.setNullValues(ni.idsNoNeighs) #### Report on Features with Large Number of Neighbors #### ni.reportWarnings() ni.reportMaximums() self.neighInfo = ni #### Set p-values for Gi Bins #### if self.permutations: #### Use Pseudo p-values #### pv = self.pseudoPVals else: #### Use Traditional p-values #### pv = self.pVals toolMSG = ARCPY.GetIDMessage(84466) if self.applyFDR: #### Set Bins Using FDR #### msg = ARCPY.GetIDMessage(84472).format(toolMSG) ARCPY.SetProgressor("default", msg) self.giBins = STATS.fdrTransform(pv, self.gi) else: msg = ARCPY.GetIDMessage(84473).format(toolMSG) ARCPY.SetProgressor("default", msg) self.giBins = STATS.pValueBins(pv, self.gi)
def stCollectByKNN(ssdo, timeField, outputFC, inSpan, inDistance): """ This method applied Jacquez Space-Time K-NN to convert event data into weighted point data by dissolving all coincident points in space and time into unique points with a new count field that contains the number of original features at that location and time span. INPUTS: ssdo (obj): SSDataObject from input timeField (str): Date/Time field name in input feature outputFC (str): path to the output feature class inSpan (int): value of temporal units within the same time bin inDistance (int): value of spatial units considered as spatial neighbors OUTPUTS: Create new collected point feature """ #### Read raw time data #### timeData = ssdo.fields[timeField].data #### Convert temporal unit #### time = NUM.array(timeData, dtype = 'datetime64[s]').astype('datetime64[D]') #### Find Start Time #### startTime = time.min() #### Create Bin for Space and Time #### timeBin = (time - startTime) / inSpan numObs = ssdo.numObs #### Create Sudo-fid to Find K-NN in Space and Time fid = [i for i in xrange(numObs)] #### Validate Output Workspace #### ERROR.checkOutputPath(outputFC) #### True Centroid Warning For Non-Point FCs #### if ssdo.shapeType.upper() != "POINT": ARCPY/AddIDMessage("WARNING", 1021) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.inputFC, spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### cnt = UTILS.getCount(ssdo.inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 4) N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 4) #### Process Any Bad Records Encountered #### numBadRecs = cnt -N if numBadRecs: badRecs = WU.parseGAWarnings(gaTable.warnings) if not ssdo.silentWarnings: ERROR.reportBadRecords(cnt, numBadRecs, badRecs, label = ssdo.oidName) #### Create Output Feature Class #### outPath, outName = OS.path.split(outputFC) try: DM.CreateFeatureclass(outPath, outName, "POINT", "", ssdo.mFlag, ssdo.zFlag, ssdo.spatialRefString) except: ARCPY.AddIDMessage("ERROR", 210, outputFC) raise SystemExit() #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(inDistance, 0, "euclidean") #### Add Count Field #### countFieldNameOut = ARCPY.ValidateFieldName(countFieldName, outPath) timeFieldNameOut = ARCPY.ValidateFieldName(timeFieldName, outPath) UTILS.addEmptyField(outputFC, countFieldNameOut, "LONG") UTILS.addEmptyField(outputFC, timeFieldNameOut, "DATE") fieldList = ["SHAPE@", countFieldNameOut, timeFieldNameOut] #### Set Insert Cursor #### rowsOut = DA.InsertCursor(outputFC, fieldList) #### Detect S-T K-NN by Space and Time Bin #### duplicateList = [] for record in fid: kNNList = [record] if record not in duplicateList: for pair in fid: if pair != record : gaSearch.search_by_idx(record) for nh in gaSearch: if timeBin[record] == timeBin[pair]: kNNList.append(nh.idx) duplicateList.append(nh.idx) #### Create and Populate New Feature #### kNNList = list(set(kNNList)) count = len(kNNList) dt = time[record] x0 = ssdo.xyCoords[kNNList, 0].mean() y0 = ssdo.xyCoords[kNNList, 1].mean() pnt =(x0, y0, ssdo.defaultZ) rowResult = [pnt, count, dt] rowsOut.insertRow(rowResult) ARCPY.SetProgressorPosition() #### Clean Up #### del rowsOut, timeBin, kNNList, duplicateList return countFieldNameOut