Beispiel #1
0
    def test_space_derivative(
        self, dim, n_points, n_discretized_curves, n_sampling_points
    ):
        """Test space derivative.
        Check result on an example and vectorization.
        """
        n_points = 3
        dim = 3
        srv_metric_r3 = SRVMetric(Euclidean(dim))
        curve = gs.random.rand(n_points, dim)
        result = srv_metric_r3.space_derivative(curve)
        delta = 1 / n_points
        d_curve_1 = (curve[1] - curve[0]) / delta
        d_curve_2 = (curve[2] - curve[0]) / (2 * delta)
        d_curve_3 = (curve[2] - curve[1]) / delta
        expected = gs.squeeze(
            gs.vstack(
                (
                    gs.to_ndarray(d_curve_1, 2),
                    gs.to_ndarray(d_curve_2, 2),
                    gs.to_ndarray(d_curve_3, 2),
                )
            )
        )
        self.assertAllClose(result, expected)

        path_of_curves = gs.random.rand(n_discretized_curves, n_sampling_points, dim)
        result = srv_metric_r3.space_derivative(path_of_curves)
        expected = []
        for i in range(n_discretized_curves):
            expected.append(srv_metric_r3.space_derivative(path_of_curves[i]))
        expected = gs.stack(expected)
        self.assertAllClose(result, expected)
Beispiel #2
0
    def test_srv_inner_product_elastic(self, dim, n_sampling_points, curve_a):
        """Test inner product of SRVMetric.
        Check that the pullback metric gives an elastic metric
        with parameters a=1, b=1/2.
        """
        tangent_vec_a = gs.random.rand(n_sampling_points, dim)
        tangent_vec_b = gs.random.rand(n_sampling_points, dim)
        r3 = Euclidean(dim)
        srv_metric_r3 = SRVMetric(r3)
        result = srv_metric_r3.inner_product(tangent_vec_a, tangent_vec_b, curve_a)

        d_vec_a = (n_sampling_points - 1) * (
            tangent_vec_a[1:, :] - tangent_vec_a[:-1, :]
        )
        d_vec_b = (n_sampling_points - 1) * (
            tangent_vec_b[1:, :] - tangent_vec_b[:-1, :]
        )
        velocity_vec = (n_sampling_points - 1) * (curve_a[1:, :] - curve_a[:-1, :])
        velocity_norm = r3.metric.norm(velocity_vec)
        unit_velocity_vec = gs.einsum("ij,i->ij", velocity_vec, 1 / velocity_norm)
        a_param = 1
        b_param = 1 / 2
        integrand = (
            a_param**2 * gs.sum(d_vec_a * d_vec_b, axis=1)
            - (a_param**2 - b_param**2)
            * gs.sum(d_vec_a * unit_velocity_vec, axis=1)
            * gs.sum(d_vec_b * unit_velocity_vec, axis=1)
        ) / velocity_norm
        expected = gs.sum(integrand) / n_sampling_points
        self.assertAllClose(result, expected)
Beispiel #3
0
    def test_split_horizontal_vertical(
        self, times, n_discretized_curves, curve_a, curve_b
    ):
        """Test split horizontal vertical.
        Check that horizontal and vertical parts of any tangent
        vector are othogonal with respect to the SRVMetric inner
        product, and check vectorization.
        """
        srv_metric_r3 = SRVMetric(r3)
        quotient_srv_metric_r3 = DiscreteCurves(ambient_manifold=r3).quotient_srv_metric
        geod = srv_metric_r3.geodesic(initial_curve=curve_a, end_curve=curve_b)
        geod = geod(times)
        tangent_vec = n_discretized_curves * (geod[1, :, :] - geod[0, :, :])
        (
            tangent_vec_hor,
            tangent_vec_ver,
            _,
        ) = quotient_srv_metric_r3.split_horizontal_vertical(tangent_vec, curve_a)
        result = srv_metric_r3.inner_product(tangent_vec_hor, tangent_vec_ver, curve_a)
        expected = 0.0
        self.assertAllClose(result, expected, atol=1e-4)

        tangent_vecs = n_discretized_curves * (geod[1:] - geod[:-1])
        _, _, result = quotient_srv_metric_r3.split_horizontal_vertical(
            tangent_vecs, geod[:-1]
        )
        expected = []
        for i in range(n_discretized_curves - 1):
            _, _, res = quotient_srv_metric_r3.split_horizontal_vertical(
                tangent_vecs[i], geod[i]
            )
            expected.append(res)
        expected = gs.stack(expected)
        self.assertAllClose(result, expected)
Beispiel #4
0
 def test_aux_differential_srv_transform_inverse(
     self, dim, n_sampling_points, curve_a
 ):
     """Test inverse of differential of square root velocity transform.
     Check that it is the inverse of aux_differential_srv_transform.
     """
     tangent_vec = gs.transpose(
         gs.tile(gs.linspace(0.0, 1.0, n_sampling_points), (dim, 1))
     )
     srv_metric_r3 = SRVMetric(r3)
     d_srv = srv_metric_r3.aux_differential_srv_transform(tangent_vec, curve_a)
     result = srv_metric_r3.aux_differential_srv_transform_inverse(d_srv, curve_a)
     expected = tangent_vec
     self.assertAllClose(result, expected, atol=1e-3, rtol=1e-3)
Beispiel #5
0
    def test_srv_transform_and_srv_transform_inverse(self, rtol, atol):
        """Test that srv and its inverse are inverse."""
        metric = SRVMetric(ambient_manifold=r3)
        curve = DiscreteCurves(r3).random_point(n_samples=2)

        srv = metric.srv_transform(curve)
        srv_inverse = metric.srv_transform_inverse(srv, curve[:, 0])

        result = srv.shape
        expected = (curve.shape[0], curve.shape[1] - 1, 3)
        self.assertAllClose(result, expected)

        result = srv_inverse
        expected = curve
        self.assertAllClose(result, expected, rtol, atol)
Beispiel #6
0
    def test_srv_transform_and_inverse(self, times, curve_a, curve_b):
        """Test of SRVT and its inverse.
        N.B: Here curves_ab are seen as curves in R3 and not S2.
        """
        l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2)
        srv_metric_r3 = SRVMetric(ambient_manifold=r3)
        curves_ab = l2_metric_s2.geodesic(curve_a, curve_b)
        curves_ab = curves_ab(times)

        curves = curves_ab
        srv_curves = srv_metric_r3.srv_transform(curves)
        starting_points = curves[:, 0, :]
        result = srv_metric_r3.srv_transform_inverse(srv_curves, starting_points)
        expected = curves

        self.assertAllClose(result, expected)
Beispiel #7
0
 def test_srv_inner_product_and_dist(self, dim, curve_a, curve_b):
     """Test that norm of log and dist coincide
     for curves with same / different starting points, and for
     the translation invariant / non invariant SRV metric.
     """
     r3 = Euclidean(dim=dim)
     curve_b_transl = curve_b + gs.array([1.0, 0.0, 0.0])
     curve_b = [curve_b, curve_b_transl]
     translation_invariant = [True, False]
     for curve in curve_b:
         for param in translation_invariant:
             srv_metric = SRVMetric(ambient_manifold=r3, translation_invariant=param)
             log = srv_metric.log(point=curve, base_point=curve_a)
             result = srv_metric.norm(vector=log, base_point=curve_a)
             expected = srv_metric.dist(curve_a, curve)
             self.assertAllClose(result, expected)
Beispiel #8
0
    def test_aux_differential_srv_transform_vectorization(
        self, dim, n_sampling_points, curve_a, curve_b
    ):
        """Test differential of square root velocity transform.
        Check vectorization.
        """
        dim = 3
        curves = gs.stack((curve_a, curve_b))
        tangent_vecs = gs.random.rand(2, n_sampling_points, dim)
        srv_metric_r3 = SRVMetric(r3)
        result = srv_metric_r3.aux_differential_srv_transform(tangent_vecs, curves)

        res_a = srv_metric_r3.aux_differential_srv_transform(tangent_vecs[0], curve_a)
        res_b = srv_metric_r3.aux_differential_srv_transform(tangent_vecs[1], curve_b)
        expected = gs.stack([res_a, res_b])
        self.assertAllClose(result, expected)
    def test_srv_metric_pointwise_inner_products(self, times, curve_a, curve_b,
                                                 curve_c, n_discretized_curves,
                                                 n_sampling_points):
        l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2)
        srv_metric_r3 = SRVMetric(ambient_manifold=r3)
        curves_ab = l2_metric_s2.geodesic(curve_a, curve_b)
        curves_bc = l2_metric_s2.geodesic(curve_b, curve_c)
        curves_ab = curves_ab(times)
        curves_bc = curves_bc(times)

        tangent_vecs = l2_metric_s2.log(point=curves_bc, base_point=curves_ab)
        result = srv_metric_r3.l2_metric.pointwise_inner_products(
            tangent_vec_a=tangent_vecs,
            tangent_vec_b=tangent_vecs,
            base_curve=curves_ab)
        expected_shape = (n_discretized_curves, n_sampling_points)
        self.assertAllClose(gs.shape(result), expected_shape)

        result = srv_metric_r3.l2_metric.pointwise_inner_products(
            tangent_vec_a=tangent_vecs[0],
            tangent_vec_b=tangent_vecs[0],
            base_curve=curves_ab[0],
        )
        expected_shape = (n_sampling_points, )
        self.assertAllClose(gs.shape(result), expected_shape)
Beispiel #10
0
    def test_srv_norm(self, curve_a, curve_b, times):
        l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2)
        srv_metric_r3 = SRVMetric(ambient_manifold=r3)
        curves_ab = l2_metric_s2.geodesic(curve_a, curve_b)
        curves_ab = curves_ab(times)
        srvs_ab = srv_metric_r3.srv_transform(curves_ab)

        result = srv_metric_r3.l2_curves_metric.norm(srvs_ab)
        products = srvs_ab * srvs_ab
        sums = [gs.sum(product) for product in products]
        squared_norm = gs.array(sums) / (srvs_ab.shape[-2] + 1)
        expected = gs.sqrt(squared_norm)
        self.assertAllClose(result, expected)

        result = result.shape
        expected = [srvs_ab.shape[0]]
        self.assertAllClose(result, expected)
    def test_srv_inner_product_vectorization(self, dim, n_sampling_points,
                                             curve_a, curve_b):
        """Test inner product of SRVMetric.
        Check vectorization.
        """
        curves = gs.stack((curve_a, curve_b))
        tangent_vecs_1 = gs.random.rand(2, n_sampling_points, dim)
        tangent_vecs_2 = gs.random.rand(2, n_sampling_points, dim)
        srv_metric_r3 = SRVMetric(r3)
        result = srv_metric_r3.inner_product(tangent_vecs_1, tangent_vecs_2,
                                             curves)

        res_a = srv_metric_r3.inner_product(tangent_vecs_1[0],
                                            tangent_vecs_2[0], curve_a)
        res_b = srv_metric_r3.inner_product(tangent_vecs_1[1],
                                            tangent_vecs_2[1], curve_b)
        expected = gs.stack((res_a, res_b))
        self.assertAllClose(result, expected)
Beispiel #12
0
    def test_srv_inner_product(self, curve_a, curve_b, curve_c, times):
        l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2)
        srv_metric_r3 = SRVMetric(ambient_manifold=r3)
        curves_ab = l2_metric_s2.geodesic(curve_a, curve_b)
        curves_bc = l2_metric_s2.geodesic(curve_b, curve_c)
        curves_ab = curves_ab(times)
        curves_bc = curves_bc(times)
        srvs_ab = srv_metric_r3.srv_transform(curves_ab)
        srvs_bc = srv_metric_r3.srv_transform(curves_bc)

        result = srv_metric_r3.l2_curves_metric.inner_product(srvs_ab, srvs_bc)
        products = srvs_ab * srvs_bc
        expected = [gs.sum(product) for product in products]
        expected = gs.array(expected) / (srvs_ab.shape[-2] + 1)
        self.assertAllClose(result, expected)

        result = result.shape
        expected = [srvs_ab.shape[0]]
        self.assertAllClose(result, expected)
    def test_aux_differential_srv_transform(self, dim, n_sampling_points,
                                            n_curves, curve_fun_a):
        """Test differential of square root velocity transform.
        Check that its value at (curve, tangent_vec) coincides
        with the derivative at zero of the square root velocity
        transform of a path of curves starting at curve with
        initial derivative tangent_vec.
        """
        srv_metric_r3 = SRVMetric(r3)
        sampling_times = gs.linspace(0.0, 1.0, n_sampling_points)
        curve_a = curve_fun_a(sampling_times)
        tangent_vec = gs.transpose(
            gs.tile(gs.linspace(1.0, 2.0, n_sampling_points), (dim, 1)))
        result = srv_metric_r3.aux_differential_srv_transform(
            tangent_vec, curve_a)

        times = gs.linspace(0.0, 1.0, n_curves)
        path_of_curves = curve_a + gs.einsum("i,jk->ijk", times, tangent_vec)
        srv_path = srv_metric_r3.srv_transform(path_of_curves)
        expected = n_curves * (srv_path[1] - srv_path[0])
        self.assertAllClose(result, expected, atol=1e-3, rtol=1e-3)