def test_space_derivative( self, dim, n_points, n_discretized_curves, n_sampling_points ): """Test space derivative. Check result on an example and vectorization. """ n_points = 3 dim = 3 srv_metric_r3 = SRVMetric(Euclidean(dim)) curve = gs.random.rand(n_points, dim) result = srv_metric_r3.space_derivative(curve) delta = 1 / n_points d_curve_1 = (curve[1] - curve[0]) / delta d_curve_2 = (curve[2] - curve[0]) / (2 * delta) d_curve_3 = (curve[2] - curve[1]) / delta expected = gs.squeeze( gs.vstack( ( gs.to_ndarray(d_curve_1, 2), gs.to_ndarray(d_curve_2, 2), gs.to_ndarray(d_curve_3, 2), ) ) ) self.assertAllClose(result, expected) path_of_curves = gs.random.rand(n_discretized_curves, n_sampling_points, dim) result = srv_metric_r3.space_derivative(path_of_curves) expected = [] for i in range(n_discretized_curves): expected.append(srv_metric_r3.space_derivative(path_of_curves[i])) expected = gs.stack(expected) self.assertAllClose(result, expected)
def test_srv_inner_product_elastic(self, dim, n_sampling_points, curve_a): """Test inner product of SRVMetric. Check that the pullback metric gives an elastic metric with parameters a=1, b=1/2. """ tangent_vec_a = gs.random.rand(n_sampling_points, dim) tangent_vec_b = gs.random.rand(n_sampling_points, dim) r3 = Euclidean(dim) srv_metric_r3 = SRVMetric(r3) result = srv_metric_r3.inner_product(tangent_vec_a, tangent_vec_b, curve_a) d_vec_a = (n_sampling_points - 1) * ( tangent_vec_a[1:, :] - tangent_vec_a[:-1, :] ) d_vec_b = (n_sampling_points - 1) * ( tangent_vec_b[1:, :] - tangent_vec_b[:-1, :] ) velocity_vec = (n_sampling_points - 1) * (curve_a[1:, :] - curve_a[:-1, :]) velocity_norm = r3.metric.norm(velocity_vec) unit_velocity_vec = gs.einsum("ij,i->ij", velocity_vec, 1 / velocity_norm) a_param = 1 b_param = 1 / 2 integrand = ( a_param**2 * gs.sum(d_vec_a * d_vec_b, axis=1) - (a_param**2 - b_param**2) * gs.sum(d_vec_a * unit_velocity_vec, axis=1) * gs.sum(d_vec_b * unit_velocity_vec, axis=1) ) / velocity_norm expected = gs.sum(integrand) / n_sampling_points self.assertAllClose(result, expected)
def test_split_horizontal_vertical( self, times, n_discretized_curves, curve_a, curve_b ): """Test split horizontal vertical. Check that horizontal and vertical parts of any tangent vector are othogonal with respect to the SRVMetric inner product, and check vectorization. """ srv_metric_r3 = SRVMetric(r3) quotient_srv_metric_r3 = DiscreteCurves(ambient_manifold=r3).quotient_srv_metric geod = srv_metric_r3.geodesic(initial_curve=curve_a, end_curve=curve_b) geod = geod(times) tangent_vec = n_discretized_curves * (geod[1, :, :] - geod[0, :, :]) ( tangent_vec_hor, tangent_vec_ver, _, ) = quotient_srv_metric_r3.split_horizontal_vertical(tangent_vec, curve_a) result = srv_metric_r3.inner_product(tangent_vec_hor, tangent_vec_ver, curve_a) expected = 0.0 self.assertAllClose(result, expected, atol=1e-4) tangent_vecs = n_discretized_curves * (geod[1:] - geod[:-1]) _, _, result = quotient_srv_metric_r3.split_horizontal_vertical( tangent_vecs, geod[:-1] ) expected = [] for i in range(n_discretized_curves - 1): _, _, res = quotient_srv_metric_r3.split_horizontal_vertical( tangent_vecs[i], geod[i] ) expected.append(res) expected = gs.stack(expected) self.assertAllClose(result, expected)
def test_aux_differential_srv_transform_inverse( self, dim, n_sampling_points, curve_a ): """Test inverse of differential of square root velocity transform. Check that it is the inverse of aux_differential_srv_transform. """ tangent_vec = gs.transpose( gs.tile(gs.linspace(0.0, 1.0, n_sampling_points), (dim, 1)) ) srv_metric_r3 = SRVMetric(r3) d_srv = srv_metric_r3.aux_differential_srv_transform(tangent_vec, curve_a) result = srv_metric_r3.aux_differential_srv_transform_inverse(d_srv, curve_a) expected = tangent_vec self.assertAllClose(result, expected, atol=1e-3, rtol=1e-3)
def test_srv_transform_and_srv_transform_inverse(self, rtol, atol): """Test that srv and its inverse are inverse.""" metric = SRVMetric(ambient_manifold=r3) curve = DiscreteCurves(r3).random_point(n_samples=2) srv = metric.srv_transform(curve) srv_inverse = metric.srv_transform_inverse(srv, curve[:, 0]) result = srv.shape expected = (curve.shape[0], curve.shape[1] - 1, 3) self.assertAllClose(result, expected) result = srv_inverse expected = curve self.assertAllClose(result, expected, rtol, atol)
def test_srv_transform_and_inverse(self, times, curve_a, curve_b): """Test of SRVT and its inverse. N.B: Here curves_ab are seen as curves in R3 and not S2. """ l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2) srv_metric_r3 = SRVMetric(ambient_manifold=r3) curves_ab = l2_metric_s2.geodesic(curve_a, curve_b) curves_ab = curves_ab(times) curves = curves_ab srv_curves = srv_metric_r3.srv_transform(curves) starting_points = curves[:, 0, :] result = srv_metric_r3.srv_transform_inverse(srv_curves, starting_points) expected = curves self.assertAllClose(result, expected)
def test_srv_inner_product_and_dist(self, dim, curve_a, curve_b): """Test that norm of log and dist coincide for curves with same / different starting points, and for the translation invariant / non invariant SRV metric. """ r3 = Euclidean(dim=dim) curve_b_transl = curve_b + gs.array([1.0, 0.0, 0.0]) curve_b = [curve_b, curve_b_transl] translation_invariant = [True, False] for curve in curve_b: for param in translation_invariant: srv_metric = SRVMetric(ambient_manifold=r3, translation_invariant=param) log = srv_metric.log(point=curve, base_point=curve_a) result = srv_metric.norm(vector=log, base_point=curve_a) expected = srv_metric.dist(curve_a, curve) self.assertAllClose(result, expected)
def test_aux_differential_srv_transform_vectorization( self, dim, n_sampling_points, curve_a, curve_b ): """Test differential of square root velocity transform. Check vectorization. """ dim = 3 curves = gs.stack((curve_a, curve_b)) tangent_vecs = gs.random.rand(2, n_sampling_points, dim) srv_metric_r3 = SRVMetric(r3) result = srv_metric_r3.aux_differential_srv_transform(tangent_vecs, curves) res_a = srv_metric_r3.aux_differential_srv_transform(tangent_vecs[0], curve_a) res_b = srv_metric_r3.aux_differential_srv_transform(tangent_vecs[1], curve_b) expected = gs.stack([res_a, res_b]) self.assertAllClose(result, expected)
def test_srv_metric_pointwise_inner_products(self, times, curve_a, curve_b, curve_c, n_discretized_curves, n_sampling_points): l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2) srv_metric_r3 = SRVMetric(ambient_manifold=r3) curves_ab = l2_metric_s2.geodesic(curve_a, curve_b) curves_bc = l2_metric_s2.geodesic(curve_b, curve_c) curves_ab = curves_ab(times) curves_bc = curves_bc(times) tangent_vecs = l2_metric_s2.log(point=curves_bc, base_point=curves_ab) result = srv_metric_r3.l2_metric.pointwise_inner_products( tangent_vec_a=tangent_vecs, tangent_vec_b=tangent_vecs, base_curve=curves_ab) expected_shape = (n_discretized_curves, n_sampling_points) self.assertAllClose(gs.shape(result), expected_shape) result = srv_metric_r3.l2_metric.pointwise_inner_products( tangent_vec_a=tangent_vecs[0], tangent_vec_b=tangent_vecs[0], base_curve=curves_ab[0], ) expected_shape = (n_sampling_points, ) self.assertAllClose(gs.shape(result), expected_shape)
def test_srv_norm(self, curve_a, curve_b, times): l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2) srv_metric_r3 = SRVMetric(ambient_manifold=r3) curves_ab = l2_metric_s2.geodesic(curve_a, curve_b) curves_ab = curves_ab(times) srvs_ab = srv_metric_r3.srv_transform(curves_ab) result = srv_metric_r3.l2_curves_metric.norm(srvs_ab) products = srvs_ab * srvs_ab sums = [gs.sum(product) for product in products] squared_norm = gs.array(sums) / (srvs_ab.shape[-2] + 1) expected = gs.sqrt(squared_norm) self.assertAllClose(result, expected) result = result.shape expected = [srvs_ab.shape[0]] self.assertAllClose(result, expected)
def test_srv_inner_product_vectorization(self, dim, n_sampling_points, curve_a, curve_b): """Test inner product of SRVMetric. Check vectorization. """ curves = gs.stack((curve_a, curve_b)) tangent_vecs_1 = gs.random.rand(2, n_sampling_points, dim) tangent_vecs_2 = gs.random.rand(2, n_sampling_points, dim) srv_metric_r3 = SRVMetric(r3) result = srv_metric_r3.inner_product(tangent_vecs_1, tangent_vecs_2, curves) res_a = srv_metric_r3.inner_product(tangent_vecs_1[0], tangent_vecs_2[0], curve_a) res_b = srv_metric_r3.inner_product(tangent_vecs_1[1], tangent_vecs_2[1], curve_b) expected = gs.stack((res_a, res_b)) self.assertAllClose(result, expected)
def test_srv_inner_product(self, curve_a, curve_b, curve_c, times): l2_metric_s2 = L2CurvesMetric(ambient_manifold=s2) srv_metric_r3 = SRVMetric(ambient_manifold=r3) curves_ab = l2_metric_s2.geodesic(curve_a, curve_b) curves_bc = l2_metric_s2.geodesic(curve_b, curve_c) curves_ab = curves_ab(times) curves_bc = curves_bc(times) srvs_ab = srv_metric_r3.srv_transform(curves_ab) srvs_bc = srv_metric_r3.srv_transform(curves_bc) result = srv_metric_r3.l2_curves_metric.inner_product(srvs_ab, srvs_bc) products = srvs_ab * srvs_bc expected = [gs.sum(product) for product in products] expected = gs.array(expected) / (srvs_ab.shape[-2] + 1) self.assertAllClose(result, expected) result = result.shape expected = [srvs_ab.shape[0]] self.assertAllClose(result, expected)
def test_aux_differential_srv_transform(self, dim, n_sampling_points, n_curves, curve_fun_a): """Test differential of square root velocity transform. Check that its value at (curve, tangent_vec) coincides with the derivative at zero of the square root velocity transform of a path of curves starting at curve with initial derivative tangent_vec. """ srv_metric_r3 = SRVMetric(r3) sampling_times = gs.linspace(0.0, 1.0, n_sampling_points) curve_a = curve_fun_a(sampling_times) tangent_vec = gs.transpose( gs.tile(gs.linspace(1.0, 2.0, n_sampling_points), (dim, 1))) result = srv_metric_r3.aux_differential_srv_transform( tangent_vec, curve_a) times = gs.linspace(0.0, 1.0, n_curves) path_of_curves = curve_a + gs.einsum("i,jk->ijk", times, tangent_vec) srv_path = srv_metric_r3.srv_transform(path_of_curves) expected = n_curves * (srv_path[1] - srv_path[0]) self.assertAllClose(result, expected, atol=1e-3, rtol=1e-3)