def test_pick_cameras(self):
        """Test picking cameras."""

        obj = copy.deepcopy(EXAMPLE_DATA)
        # add a new track with just camera 0 and 2
        track_to_add = SfmTrack(np.array([0, -2.0, 5.0]))
        track_to_add.add_measurement(idx=0, m=np.array([20.0, 5.0]))
        track_to_add.add_measurement(idx=2, m=np.array([60.0, 50.0]))
        obj.add_track(track_to_add)

        # pick the cameras at index 0 and 2, and hence dropping camera at index 1.
        cams_to_pick = [0, 2]
        computed = GtsfmData.from_selected_cameras(obj, cams_to_pick)

        # test the camera has actually been dropped
        self.assertListEqual(computed.get_valid_camera_indices(), cams_to_pick)

        # test the camera objects
        self.assertEqual(computed.get_camera(0), obj.get_camera(0))
        self.assertEqual(computed.get_camera(2), obj.get_camera(2))

        # check the track
        self.assertEqual(computed.number_tracks(), 1)
        self.assertTrue(
            computed.get_track(0).equals(track_to_add, EQUALITY_TOLERANCE))
Beispiel #2
0
def values_to_gtsfm_data(values: Values, initial_data: GtsfmData) -> GtsfmData:
    """Cast results from the optimization to GtsfmData object.

    Args:
        values: results of factor graph optimization.
        initial_data: data used to generate the factor graph; used to extract information about poses and 3d points in
                      the graph.

    Returns:
        optimized poses and landmarks.
    """
    result = GtsfmData(initial_data.number_images())

    # add cameras
    for i in initial_data.get_valid_camera_indices():
        result.add_camera(i, values.atPinholeCameraCal3Bundler(C(i)))

    # add tracks
    for j in range(initial_data.number_tracks()):
        input_track = initial_data.get_track(j)

        # populate the result with optimized 3D point
        result_track = SfmTrack(values.atPoint3(P(j)))

        for measurement_idx in range(input_track.number_measurements()):
            i, uv = input_track.measurement(measurement_idx)
            result_track.add_measurement(i, uv)

        result.add_track(result_track)

    return result
    def test_get_track(self):
        """Testing getter for track."""
        expected_track = SfmTrack(
            np.array([6.41689062, 0.38897032, -23.58628273]))
        expected_track.add_measurement(0, np.array([383.88000488, 15.2999897]))
        expected_track.add_measurement(1, np.array([559.75, 106.15000153]))

        computed = EXAMPLE_DATA.get_track(1)

        # comparing just the point because track equality is failing
        np.testing.assert_allclose(computed.point3(), expected_track.point3())
    def test_add_track_with_nonexistant_cameras(self):
        """Testing track addition where some cameras are not in tracks, resulting in failure."""
        gtsfm_data = copy.deepcopy(EXAMPLE_DATA)

        # add a track on camera #0 and #1, which exists in the data
        track_to_add = SfmTrack(np.array([0, -2.0, 5.0]))
        track_to_add.add_measurement(idx=0, m=np.array([20.0, 5.0]))
        track_to_add.add_measurement(idx=3, m=np.array(
            [60.0, 50.0]))  # this camera does not exist

        self.assertFalse(gtsfm_data.add_track(track_to_add))
    def test_add_track_with_valid_cameras(self):
        """Testing track addition when all cameras in track are already present."""

        gtsfm_data = copy.deepcopy(EXAMPLE_DATA)

        # add a track on camera #0 and #1, which exists in the data
        track_to_add = SfmTrack(np.array([0, -2.0, 5.0]))
        track_to_add.add_measurement(idx=0, m=np.array([20.0, 5.0]))
        track_to_add.add_measurement(idx=1, m=np.array([60.0, 50.0]))

        self.assertTrue(gtsfm_data.add_track(track_to_add))
Beispiel #6
0
    def run(
        self,
        cameras: Dict[int, PinholeCameraCal3Bundler],
        corr_idxs_dict: Dict[Tuple[int, int], np.ndarray],
        keypoints_list: List[Keypoints],
    ) -> SfmData:
        """Perform the data association.

        Args:
            cameras: dictionary with image index as key, and camera object w/ intrinsics + extrinsics as value.
            corr_idxs_dict: dictionary, with key as image pair (i1,i2) and value as matching keypoint indices.
            keypoints_list: keypoints for each image.

        Returns:
            cameras and tracks as SfmData
        """

        available_cams = np.array(list(cameras.keys()), dtype=np.uint32)

        # form few tracks randomly
        tracks = []
        num_tracks = random.randint(5, 10)

        for _ in range(num_tracks):
            # obtain 3D points for the track randomly
            point_3d = np.random.rand(3, 1)

            # create GTSAM's SfmTrack object
            sfmTrack = SfmTrack(point_3d)

            # randomly select cameras for this track
            selected_cams = np.random.choice(available_cams, self.min_track_len, replace=False)

            # for each selected camera, randomly select a point
            for cam_idx in selected_cams:
                measurement_idx = random.randint(0, len(keypoints_list[cam_idx]) - 1)
                measurement = keypoints_list[cam_idx].coordinates[measurement_idx]

                sfmTrack.add_measurement(cam_idx, measurement)

            tracks.append(sfmTrack)

        # create the final SfmData object
        sfm_data = SfmData()
        for cam in cameras.values():
            sfm_data.add_camera(cam)

        for track in tracks:
            sfm_data.add_track(track)

        return sfm_data
def test_compute_track_reprojection_errors():
    """Ensure that reprojection error is computed properly within a track.

    # For camera 0:
    # [13] = [10,0,3]   [1,0,0 | 0]  [1]
    # [24] = [0,10,4] * [0,1,0 | 0] *[2]
    #  [1] = [0, 0,1]   [0,0,1 | 0]  [1]
    #                                [1]

    # For camera 1:
    # [-7] = [10,0,3]   [1,0,0 |-2]  [1]
    # [44] = [0,10,4] * [0,1,0 | 2] *[2]
    #  [1] = [0, 0,1]   [0,0,1 | 0]  [1]
    #                                [1]
    """
    wTi0 = Pose3(Rot3.RzRyRx(0, 0, 0), np.zeros((3, 1)))
    wTi1 = Pose3(Rot3.RzRyRx(0, 0, 0), np.array([2, -2, 0]))

    f = 10
    k1 = 0
    k2 = 0
    u0 = 3
    v0 = 4

    K0 = Cal3Bundler(f, k1, k2, u0, v0)
    K1 = Cal3Bundler(f, k1, k2, u0, v0)

    track_camera_dict = {
        0: PinholeCameraCal3Bundler(wTi0, K0),
        1: PinholeCameraCal3Bundler(wTi1, K1)
    }

    triangulated_pt = np.array([1, 2, 1])
    track_3d = SfmTrack(triangulated_pt)

    # in camera 0
    track_3d.add_measurement(idx=0, m=np.array([13, 24]))
    # in camera 1
    track_3d.add_measurement(idx=1, m=np.array(
        [-8, 43]))  # should be (-7,44), 1 px error in each dim

    errors, avg_track_reproj_error = reproj_utils.compute_track_reprojection_errors(
        track_camera_dict, track_3d)

    expected_errors = np.array([0, np.sqrt(2)])
    np.testing.assert_allclose(errors, expected_errors)
    assert avg_track_reproj_error == np.sqrt(2) / 2
def test_get_average_point_color():
    """ Ensure 3d point color is computed as mean of RGB per 2d measurement."""
    # random point; 2d measurements below are dummy locations (not actual projection)
    triangulated_pt = np.array([1, 2, 1])
    track_3d = SfmTrack(triangulated_pt)

    # in camera 0
    track_3d.add_measurement(idx=0, m=np.array([130, 80]))
    # in camera 1
    track_3d.add_measurement(idx=1, m=np.array([10, 60]))

    img0 = np.zeros((100, 200, 3), dtype=np.uint8)
    img0[80, 130] = np.array([40, 50, 60])

    img1 = np.zeros((100, 200, 3), dtype=np.uint8)
    img1[60, 10] = np.array([60, 70, 80])

    images = {0: Image(img0), 1: Image(img1)}

    r, g, b = image_utils.get_average_point_color(track_3d, images)
    assert r == 50
    assert g == 60
    assert b == 70
    def test_select_largest_connected_component(self, graph_largest_cc_mock):
        """Test pruning to largest connected component according to tracks.
        
        The function under test calles the graph utility, which has been mocked and we test the call against the mocked
        object.
        """
        gtsfm_data = GtsfmData(5)
        cam = PinholeCameraCal3Bundler(Pose3(), Cal3Bundler())

        # add the same camera at all indices
        for i in range(gtsfm_data.number_images()):
            gtsfm_data.add_camera(i, cam)

        # add two tracks to create two connected components
        track_1 = SfmTrack(
            np.random.randn(3))  # track with 2 cameras, which will be dropped
        track_1.add_measurement(idx=0, m=np.random.randn(2))
        track_1.add_measurement(idx=3, m=np.random.randn(2))

        track_2 = SfmTrack(
            np.random.randn(3))  # track with 3 cameras, which will be retained
        track_2.add_measurement(idx=1, m=np.random.randn(2))
        track_2.add_measurement(idx=2, m=np.random.randn(2))
        track_2.add_measurement(idx=4, m=np.random.randn(2))

        gtsfm_data.add_track(track_1)
        gtsfm_data.add_track(track_2)

        largest_component_data = gtsfm_data.select_largest_connected_component(
        )

        # check the graph util function called with the edges defined by tracks
        graph_largest_cc_mock.assert_called_once_with([(0, 3), (1, 2), (1, 4),
                                                       (2, 4)])

        # check the expected cameras coming just from track_2
        expected_camera_indices = [1, 2, 4]
        computed_camera_indices = largest_component_data.get_valid_camera_indices(
        )
        self.assertListEqual(computed_camera_indices, expected_camera_indices)

        # check that there is just one track
        expected_num_tracks = 1
        computed_num_tracks = largest_component_data.number_tracks()
        self.assertEqual(computed_num_tracks, expected_num_tracks)

        # check the exact track
        computed_track = largest_component_data.get_track(0)
        self.assertTrue(computed_track.equals(track_2, EQUALITY_TOLERANCE))
Beispiel #10
0
 def test_sfmTrack_roundtrip(self):
     obj = SfmTrack(Point3(1, 1, 0))
     obj.add_measurement(0, Point2(-1, 5))
     obj.add_measurement(1, Point2(6, 2))
     self.assertEqualityOnPickleRoundtrip(obj)
Beispiel #11
0
    def triangulate(
        self, track_2d: SfmTrack2d
    ) -> Tuple[Optional[SfmTrack], Optional[float], bool]:
        """Triangulates 3D point according to the configured triangulation mode.

        Args:
            track: feature track from which measurements are to be extracted

        Returns:
            track with inlier measurements and 3D landmark. None returned if triangulation fails or has high error.
            avg_track_reproj_error: reprojection error of 3d triangulated point to each image plane
                Note: this may be "None" if the 3d point could not be triangulated successfully
                due to a cheirality exception or insufficient number of RANSAC inlier measurements
            is_cheirality_failure: boolean representing whether the selected 2d measurements lead
                to a cheirality exception upon triangulation
        """
        if self.mode in [
                TriangulationParam.RANSAC_SAMPLE_UNIFORM,
                TriangulationParam.RANSAC_SAMPLE_BIASED_BASELINE,
                TriangulationParam.RANSAC_TOPK_BASELINES,
        ]:
            best_inliers = self.execute_ransac_variant(track_2d)

        elif self.mode == TriangulationParam.NO_RANSAC:
            best_inliers = np.ones(len(track_2d.measurements),
                                   dtype=bool)  # all marked as inliers

        inlier_idxs = (np.where(best_inliers)[0]).tolist()

        is_cheirality_failure = False
        if len(inlier_idxs) < 2:
            return None, None, is_cheirality_failure

        inlier_track = track_2d.select_subset(inlier_idxs)

        camera_track, measurement_track = self.extract_measurements(
            inlier_track)
        try:
            triangulated_pt = gtsam.triangulatePoint3(
                camera_track,
                measurement_track,
                rank_tol=SVD_DLT_RANK_TOL,
                optimize=True,
            )
        except RuntimeError:
            is_cheirality_failure = True
            return None, None, is_cheirality_failure

        # compute reprojection errors for each measurement
        reproj_errors = self.compute_track_reprojection_errors(
            inlier_track.measurements, triangulated_pt)

        # all the measurements should have error < threshold
        if not np.all(reproj_errors < self.reproj_error_thresh):
            return None, reproj_errors.mean(), is_cheirality_failure

        track_3d = SfmTrack(triangulated_pt)
        for i, uv in inlier_track.measurements:
            track_3d.add_measurement(i, uv)

        avg_track_reproj_error = reproj_errors.mean()
        return track_3d, avg_track_reproj_error, is_cheirality_failure