Beispiel #1
0
 def perception_loss(self, images, labels, num_classes, is_training, restore, scope):
   """Calculate the total loss on a single tower running the ImageNet model.
 
   We perform 'batch splitting'. This means that we cut up a batch across
   multiple GPU's. For instance, if the batch size = 32 and num_gpus = 2,
   then each tower will operate on an batch of 16 images.
 
   Args:
     images: Images. 4D tensor of size [batch_size, FLAGS.image_size,
                                        FLAGS.image_size, 3].
     labels: 1-D integer Tensor of [batch_size].
     num_classes: number of classes
     scope: unique prefix string identifying the ImageNet tower, e.g.
       'tower_0'.
 
   Returns:
      Tensor of shape [] containing the total loss for a batch of data
   """
   # When fine-tuning a model, we do not restore the logits but instead we
   # randomly initialize the logits. The number of classes in the output of the
   # logit is the number of classes in specified Dataset.
   
   # Build inference Graph.
   with tf.name_scope(scope) as scope:
     with tf.device('/gpu:0'): 
           
   	 logits = inception.inference(tf.tile(images,[1,1,1,3]), num_classes, for_training=is_training, restore_logits=restore, scope=scope)
   	  
   	 # Build the portion of the Graph calculating the losses. Note that we will
   	 # assemble the total_loss using a custom function below.
   	 split_batch_size = images.get_shape().as_list()[0]
   	 inception.loss(logits, labels, batch_size=split_batch_size)
   	  
   	 # Assemble all of the losses for the current tower only.
   	 losses = tf.get_collection(slim.losses.LOSSES_COLLECTION, scope)
   	  
   	 # Calculate the total loss for the current tower.
   	 total_loss = tf.add_n(losses, name='total_loss')
   	  
   	    
   	 # Attach a scalar summmary to all individual losses and the total loss; do the
   	 # same for the averaged version of the losses.
   	 for l in losses:
   	   # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
   	   # session. This helps the clarity of presentation on TensorBoard.
   	   loss_name = l.op.name
   	   # Name each loss as '(raw)' and name the moving average version of the loss
   	   # as the original loss name.
   	   tf.scalar_summary(loss_name, l)
   	  
   	 return total_loss                        
Beispiel #2
0
def _tower_loss(images, labels, num_classes, scope, reuse_variables=None):
    """Calculate the total loss on a single tower running the ImageNet model.

  We perform 'batch splitting'. This means that we cut up a batch across
  multiple GPUs. For instance, if the batch size = 32 and num_gpus = 2,
  then each tower will operate on an batch of 16 images.

  Args:
    images: Images. 4D tensor of size [batch_size, FLAGS.image_size,
                                       FLAGS.image_size, 3].
    labels: 1-D integer Tensor of [batch_size].
    num_classes: number of classes
    scope: unique prefix string identifying the ImageNet tower, e.g.
      'tower_0'.

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # When fine-tuning a model, we do not restore the logits but instead we
    # randomly initialize the logits. The number of classes in the output of the
    # logit is the number of classes in specified Dataset.
    restore_logits = not FLAGS.fine_tune

    # Build inference Graph.
    with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):
        logits = inception.inference(images,
                                     num_classes,
                                     for_training=True,
                                     restore_logits=restore_logits,
                                     scope=scope)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    split_batch_size = images.get_shape().as_list()[0]
    inception.loss(logits, labels, batch_size=split_batch_size)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection(slim.losses.LOSSES_COLLECTION, scope)

    # Calculate the total loss for the current tower.
    regularization_losses = tf.get_collection(
        tf.GraphKeys.REGULARIZATION_LOSSES)
    total_loss = tf.add_n(losses + regularization_losses, name='total_loss')

    return total_loss
def main(argv=None):
    ps_hosts = FLAGS.ps_hosts.split(',')
    worker_hosts = FLAGS.worker_hosts.split(',')
    tf.logging.info('PS hosts are: %s' % ps_hosts)
    tf.logging.info('Worker hosts are: %s' % worker_hosts)
    cluster_spec = tf.train.ClusterSpec({
        'ps': ps_hosts,
        'worker': worker_hosts
    })
    server = tf.train.Server({
        'ps': ps_hosts,
        'worker': worker_hosts
    },
                             job_name=FLAGS.job_name,
                             task_index=FLAGS.task_id,
                             protocol=FLAGS.protocol)

    sspManager = SspManager(len(worker_hosts), 5)
    if FLAGS.job_name == 'ps':
        if FLAGS.task_id == 0:
            rpcServer = sspManager.create_rpc_server(ps_hosts[0].split(':')[0])
            rpcServer.serve()
        server.join()

    time.sleep(5)
    rpcClient = sspManager.create_rpc_client(ps_hosts[0].split(':')[0])

    dataset = ImagenetData(subset=FLAGS.subset)
    assert dataset.data_files()
    is_chief = (FLAGS.task_id == 0)
    if is_chief:
        if not tf.gfile.Exists(FLAGS.train_dir):
            tf.gfile.MakeDirs(FLAGS.train_dir)

    num_workers = len(cluster_spec.as_dict()['worker'])
    num_parameter_servers = len(cluster_spec.as_dict()['ps'])

    with tf.device('/job:worker/task:%d' % FLAGS.task_id):
        with slim.scopes.arg_scope(
            [slim.variables.variable, slim.variables.global_step],
                device=slim.variables.VariableDeviceChooser(
                    num_parameter_servers)):
            '''Prepare Input'''
            global_step = slim.variables.global_step()
            batch_size = tf.placeholder(dtype=tf.int32,
                                        shape=(),
                                        name='batch_size')
            images, labels = image_processing.distorted_inputs(
                dataset,
                batch_size,
                num_preprocess_threads=FLAGS.num_preprocess_threads)
            num_classes = dataset.num_classes() + 1
            '''Inference'''
            logits = inception.inference(images,
                                         num_classes,
                                         for_training=True)
            '''Loss'''
            inception.loss(logits, labels, batch_size)
            losses = tf.get_collection(slim.losses.LOSSES_COLLECTION)
            losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
            total_loss = tf.add_n(losses, name='total_loss')
            if is_chief:
                loss_averages = tf.train.ExponentialMovingAverage(0.9,
                                                                  name='avg')
                loss_averages_op = loss_averages.apply(losses + [total_loss])
                with tf.control_dependencies([loss_averages_op]):
                    total_loss = tf.identity(total_loss)
            '''Optimizer'''
            exp_moving_averager = tf.train.ExponentialMovingAverage(
                inception.MOVING_AVERAGE_DECAY, global_step)
            variables_to_average = (tf.trainable_variables() +
                                    tf.moving_average_variables())
            num_batches_per_epoch = (dataset.num_examples_per_epoch() /
                                     FLAGS.batch_size)
            decay_steps = int(num_batches_per_epoch *
                              FLAGS.num_epochs_per_decay / num_workers)
            lr = tf.train.exponential_decay(FLAGS.initial_learning_rate,
                                            global_step,
                                            decay_steps,
                                            FLAGS.learning_rate_decay_factor,
                                            staircase=True)
            opt = tf.train.RMSPropOptimizer(lr,
                                            RMSPROP_DECAY,
                                            momentum=RMSPROP_MOMENTUM,
                                            epsilon=RMSPROP_EPSILON)
            '''Train Operation'''
            batchnorm_updates = tf.get_collection(
                slim.ops.UPDATE_OPS_COLLECTION)
            assert batchnorm_updates, 'Batchnorm updates are missing'
            batchnorm_updates_op = tf.group(*batchnorm_updates)
            with tf.control_dependencies([batchnorm_updates_op]):
                total_loss = tf.identity(total_loss)
            naive_grads = opt.compute_gradients(total_loss)
            grads = [(tf.scalar_mul(
                tf.cast(batch_size / FLAGS.batch_size, tf.float32), grad), var)
                     for grad, var in naive_grads]
            apply_gradients_op = opt.apply_gradients(grads,
                                                     global_step=global_step)
            with tf.control_dependencies([apply_gradients_op]):
                train_op = tf.identity(total_loss, name='train_op')
            '''Supervisor and Session'''
            saver = tf.train.Saver()
            init_op = tf.global_variables_initializer()
            sv = tf.train.Supervisor(is_chief=is_chief,
                                     logdir=FLAGS.train_dir,
                                     init_op=init_op,
                                     summary_op=None,
                                     global_step=global_step,
                                     recovery_wait_secs=1,
                                     saver=saver,
                                     save_model_secs=FLAGS.save_interval_secs)
            tf.logging.info('%s Supervisor' % datetime.now())
            sess_config = tf.ConfigProto(
                allow_soft_placement=True,
                log_device_placement=FLAGS.log_device_placement)
            sess = sv.prepare_or_wait_for_session(server.target,
                                                  config=sess_config)
            queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS)
            '''Start Training'''
            sv.start_queue_runners(sess, queue_runners)
            tf.logging.info('Started %d queues for processing input data.',
                            len(queue_runners))

            batch_size_num = FLAGS.batch_size
            for step in range(FLAGS.max_steps):
                start_time = time.time()
                run_options = tf.RunOptions(
                    trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                loss_value, gs = sess.run(
                    [train_op, global_step],
                    feed_dict={batch_size: batch_size_num},
                    options=run_options,
                    run_metadata=run_metadata)

                assert not np.isnan(
                    loss_value), 'Model diverged with loss = NaN'

                duration = time.time() - start_time
                examples_per_sec = batch_size_num / float(duration)
                sec_per_batch = float(duration)
                format_str = (
                    "time: " + str(time.time()) +
                    '; %s: step %d (gs %d), loss= %.2f (%.1f samples/s; %.3f s/batch)'
                )
                tf.logging.info(format_str %
                                (datetime.now(), step, gs, loss_value,
                                 examples_per_sec, sec_per_batch))
                rpcClient.check_staleness(FLAGS.task_id, step)
Beispiel #4
0
def _tower_loss(images, labels, num_classes, scope, reuse_variables=None):
    """Calculate the total loss on a single tower running the ImageNet model.

  We perform 'batch splitting'. This means that we cut up a batch across
  multiple GPU's. For instance, if the batch size = 32 and num_gpus = 2,
  then each tower will operate on an batch of 16 images.

  Args:
    images: Images. 4D tensor of size [batch_size, FLAGS.image_size,
                                       FLAGS.image_size, 3].
    labels: 1-D integer Tensor of [batch_size].
    num_classes: number of classes
    scope: unique prefix string identifying the ImageNet tower, e.g.
      'tower_0'.

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # When fine-tuning a model, we do not restore the logits but instead we
    # randomly initialize the logits. The number of classes in the output of the
    # logit is the number of classes in specified Dataset.
    restore_logits = not FLAGS.fine_tune

    # Build inference Graph.
    with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):
        logits = inception.inference(images,
                                     num_classes,
                                     for_training=True,
                                     restore_logits=restore_logits,
                                     scope=scope)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    split_batch_size = images.get_shape().as_list()[0]
    inception.loss(logits, labels, batch_size=split_batch_size)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection(slim.losses.LOSSES_COLLECTION, scope)

    # Calculate the total loss for the current tower.
    regularization_losses = tf.get_collection(
        tf.GraphKeys.REGULARIZATION_LOSSES)
    total_loss = tf.add_n(losses + regularization_losses, name='total_loss')

    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summmary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on TensorBoard.
        loss_name = re.sub('%s_[0-9]*/' % inception.TOWER_NAME, '', l.op.name)
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.summary.scalar(loss_name + ' (raw)', l)
        tf.summary.scalar(loss_name, loss_averages.average(l))

    with tf.control_dependencies([loss_averages_op]):
        total_loss = tf.identity(total_loss)
    return total_loss
def train(target, dataset, cluster_spec):
    """Train Inception on a dataset for a number of steps."""
    # Number of workers and parameter servers are infered from the workers and ps
    # hosts string.
    num_workers = len(cluster_spec.as_dict()['worker'])
    num_parameter_servers = len(cluster_spec.as_dict()['ps'])
    # If no value is given, num_replicas_to_aggregate defaults to be the number of
    # workers.
    if FLAGS.num_replicas_to_aggregate == -1:
        num_replicas_to_aggregate = num_workers
    else:
        num_replicas_to_aggregate = FLAGS.num_replicas_to_aggregate

    # Both should be greater than 0 in a distributed training.
    assert num_workers > 0 and num_parameter_servers > 0, (' num_workers and '
                                                           'num_parameter_servers'
                                                           ' must be > 0.')

    # Choose worker 0 as the chief. Note that any worker could be the chief
    # but there should be only one chief.
    is_chief = (FLAGS.task_id == 0)

    # Ops are assigned to worker by default.
    with tf.device('/job:worker/task:%d' % FLAGS.task_id):
        # Variables and its related init/assign ops are assigned to ps.
        with slim.scopes.arg_scope(
                [slim.variables.variable, slim.variables.global_step],
                device=slim.variables.VariableDeviceChooser(num_parameter_servers)):
            # Create a variable to count the number of train() calls. This equals the
            # number of updates applied to the variables.
            global_step = slim.variables.global_step()

            # Calculate the learning rate schedule.
            num_batches_per_epoch = (dataset.num_examples_per_epoch() /
                                     FLAGS.batch_size)
            # Decay steps need to be divided by the number of replicas to aggregate.
            decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay /
                              num_replicas_to_aggregate)

            # Decay the learning rate exponentially based on the number of steps.
            lr = tf.train.exponential_decay(FLAGS.initial_learning_rate,
                                            global_step,
                                            decay_steps,
                                            FLAGS.learning_rate_decay_factor,
                                            staircase=True)
            # Add a summary to track the learning rate.
            tf.summary.scalar('learning_rate', lr)

            # Create an optimizer that performs gradient descent.
            opt = tf.train.RMSPropOptimizer(lr,
                                            RMSPROP_DECAY,
                                            momentum=RMSPROP_MOMENTUM,
                                            epsilon=RMSPROP_EPSILON)

            images, labels = image_processing.distorted_inputs(
                dataset,
                batch_size=FLAGS.batch_size,
                num_preprocess_threads=FLAGS.num_preprocess_threads)

            # Number of classes in the Dataset label set plus 1.
            # Label 0 is reserved for an (unused) background class.
            num_classes = dataset.num_classes() + 1
            logits = inception.inference(images, num_classes, for_training=True)
            # Add classification loss.
            inception.loss(logits, labels)

            # Gather all of the losses including regularization losses.
            losses = tf.get_collection(slim.losses.LOSSES_COLLECTION)
            losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

            total_loss = tf.add_n(losses, name='total_loss')

            if is_chief:
                # Compute the moving average of all individual losses and the
                # total loss.
                loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
                loss_averages_op = loss_averages.apply(losses + [total_loss])

                # Attach a scalar summmary to all individual losses and the total loss;
                # do the same for the averaged version of the losses.
                for l in losses + [total_loss]:
                    loss_name = l.op.name
                    # Name each loss as '(raw)' and name the moving average version of the
                    # loss as the original loss name.
                    tf.summary.scalar(loss_name + ' (raw)', l)
                    tf.summary.scalar(loss_name, loss_averages.average(l))

                # Add dependency to compute loss_averages.
                with tf.control_dependencies([loss_averages_op]):
                    total_loss = tf.identity(total_loss)

            # Track the moving averages of all trainable variables.
            # Note that we maintain a 'double-average' of the BatchNormalization
            # global statistics.
            # This is not needed when the number of replicas are small but important
            # for synchronous distributed training with tens of workers/replicas.
            exp_moving_averager = tf.train.ExponentialMovingAverage(
                inception.MOVING_AVERAGE_DECAY, global_step)

            variables_to_average = (
                tf.trainable_variables() + tf.moving_average_variables())

            # Add histograms for model variables.
            for var in variables_to_average:
                tf.summary.histogram(var.op.name, var)

            # Create synchronous replica optimizer.
            opt = tf.train.SyncReplicasOptimizer(
                opt,
                replicas_to_aggregate=num_replicas_to_aggregate,
                replica_id=FLAGS.task_id,
                total_num_replicas=num_workers,
                variable_averages=exp_moving_averager,
                variables_to_average=variables_to_average)

            batchnorm_updates = tf.get_collection(slim.ops.UPDATE_OPS_COLLECTION)
            assert batchnorm_updates, 'Batchnorm updates are missing'
            batchnorm_updates_op = tf.group(*batchnorm_updates)
            # Add dependency to compute batchnorm_updates.
            with tf.control_dependencies([batchnorm_updates_op]):
                total_loss = tf.identity(total_loss)

            # Compute gradients with respect to the loss.
            grads = opt.compute_gradients(total_loss)

            # Add histograms for gradients.
            for grad, var in grads:
                if grad is not None:
                    tf.summary.histogram(var.op.name + '/gradients', grad)

            apply_gradients_op = opt.apply_gradients(grads, global_step=global_step)

            with tf.control_dependencies([apply_gradients_op]):
                train_op = tf.identity(total_loss, name='train_op')

            # Get chief queue_runners, init_tokens and clean_up_op, which is used to
            # synchronize replicas.
            # More details can be found in sync_replicas_optimizer.
            chief_queue_runners = [opt.get_chief_queue_runner()]
            init_tokens_op = opt.get_init_tokens_op()
            clean_up_op = opt.get_clean_up_op()

            # Create a saver.
            saver = tf.train.Saver()

            # Build the summary operation based on the TF collection of Summaries.
            summary_op = tf.merge_all_summaries()

            # Build an initialization operation to run below.
            init_op = tf.initialize_all_variables()

            # We run the summaries in the same thread as the training operations by
            # passing in None for summary_op to avoid a summary_thread being started.
            # Running summaries and training operations in parallel could run out of
            # GPU memory.
            sv = tf.train.Supervisor(is_chief=is_chief,
                                     logdir=FLAGS.train_dir,
                                     init_op=init_op,
                                     summary_op=None,
                                     global_step=global_step,
                                     saver=saver,
                                     save_model_secs=FLAGS.save_interval_secs)

            tf.logging.info('%s Supervisor' % datetime.now())

            sess_config = tf.ConfigProto(
                allow_soft_placement=True,
                log_device_placement=FLAGS.log_device_placement)

            # Get a session.
            sess = sv.prepare_or_wait_for_session(target, config=sess_config)

            # Start the queue runners.
            queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS)
            sv.start_queue_runners(sess, queue_runners)
            tf.logging.info('Started %d queues for processing input data.',
                            len(queue_runners))

            if is_chief:
                sv.start_queue_runners(sess, chief_queue_runners)
                sess.run(init_tokens_op)

            # Train, checking for Nans. Concurrently run the summary operation at a
            # specified interval. Note that the summary_op and train_op never run
            # simultaneously in order to prevent running out of GPU memory.
            next_summary_time = time.time() + FLAGS.save_summaries_secs
            while not sv.should_stop():
                try:
                    start_time = time.time()
                    loss_value, step = sess.run([train_op, global_step])
                    assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
                    if step > FLAGS.max_steps:
                        break
                    duration = time.time() - start_time

                    if step % 30 == 0:
                        examples_per_sec = FLAGS.batch_size / float(duration)
                        format_str = ('Worker %d: %s: step %d, loss = %.2f'
                                      '(%.1f examples/sec; %.3f  sec/batch)')
                        tf.logging.info(format_str %
                                        (FLAGS.task_id, datetime.now(), step, loss_value,
                                         examples_per_sec, duration))

                    # Determine if the summary_op should be run on the chief worker.
                    if is_chief and next_summary_time < time.time():
                        tf.logging.info('Running Summary operation on the chief.')
                        summary_str = sess.run(summary_op)
                        sv.summary_computed(sess, summary_str)
                        tf.logging.info('Finished running Summary operation.')

                        # Determine the next time for running the summary.
                        next_summary_time += FLAGS.save_summaries_secs
                except:
                    if is_chief:
                        tf.logging.info('About to execute sync_clean_up_op!')
                        sess.run(clean_up_op)
                    raise

            # Stop the supervisor.  This also waits for service threads to finish.
            sv.stop()

            # Save after the training ends.
            if is_chief:
                saver.save(sess,
                           os.path.join(FLAGS.train_dir, 'model.ckpt'),
                           global_step=global_step)
def train(target, dataset, cluster_spec):
    """Train Inception on a dataset for a number of steps."""
    # Number of workers and parameter servers are infered from the workers and ps
    # hosts string.
    num_workers = len(cluster_spec.as_dict()['worker'])
    num_parameter_servers = len(cluster_spec.as_dict()['ps'])
    # If no value is given, num_replicas_to_aggregate defaults to be the number of
    # workers.
    if FLAGS.num_replicas_to_aggregate == -1:
        num_replicas_to_aggregate = num_workers
    else:
        num_replicas_to_aggregate = FLAGS.num_replicas_to_aggregate

    # Both should be greater than 0 in a distributed training.
    assert num_workers > 0 and num_parameter_servers > 0, (
        ' num_workers and '
        'num_parameter_servers'
        ' must be > 0.')

    # Choose worker 0 as the chief. Note that any worker could be the chief
    # but there should be only one chief.
    is_chief = (FLAGS.task_id == 0)

    # Ops are assigned to worker by default.
    with tf.device('/job:worker/task:%d' % FLAGS.task_id):
        # Variables and its related init/assign ops are assigned to ps.
        with slim.scopes.arg_scope(
            [slim.variables.variable, slim.variables.global_step],
                device=slim.variables.VariableDeviceChooser(
                    num_parameter_servers)):
            # Create a variable to count the number of train() calls. This equals the
            # number of updates applied to the variables.
            global_step = slim.variables.global_step()

            # Calculate the learning rate schedule.
            num_batches_per_epoch = (dataset.num_examples_per_epoch() /
                                     FLAGS.batch_size)
            # Decay steps need to be divided by the number of replicas to aggregate.
            decay_steps = int(num_batches_per_epoch *
                              FLAGS.num_epochs_per_decay /
                              num_replicas_to_aggregate)

            # Decay the learning rate exponentially based on the number of steps.
            lr = tf.train.exponential_decay(FLAGS.initial_learning_rate,
                                            global_step,
                                            decay_steps,
                                            FLAGS.learning_rate_decay_factor,
                                            staircase=True)
            # Add a summary to track the learning rate.
            tf.summary.scalar('learning_rate', lr)

            # Create an optimizer that performs gradient descent.
            opt = tf.train.RMSPropOptimizer(lr,
                                            RMSPROP_DECAY,
                                            momentum=RMSPROP_MOMENTUM,
                                            epsilon=RMSPROP_EPSILON)

            images, labels = image_processing.distorted_inputs(
                dataset,
                batch_size=FLAGS.batch_size,
                num_preprocess_threads=FLAGS.num_preprocess_threads)

            # Number of classes in the Dataset label set plus 1.
            # Label 0 is reserved for an (unused) background class.
            num_classes = dataset.num_classes() + 1
            logits = inception.inference(images,
                                         num_classes,
                                         for_training=True)
            # Add classification loss.
            inception.loss(logits, labels)

            # Gather all of the losses including regularization losses.
            losses = tf.get_collection(slim.losses.LOSSES_COLLECTION)
            losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

            total_loss = tf.add_n(losses, name='total_loss')

            if is_chief:
                # Compute the moving average of all individual losses and the
                # total loss.
                loss_averages = tf.train.ExponentialMovingAverage(0.9,
                                                                  name='avg')
                loss_averages_op = loss_averages.apply(losses + [total_loss])

                # Attach a scalar summmary to all individual losses and the total loss;
                # do the same for the averaged version of the losses.
                for l in losses + [total_loss]:
                    loss_name = l.op.name
                    # Name each loss as '(raw)' and name the moving average version of the
                    # loss as the original loss name.
                    tf.summary.scalar(loss_name + ' (raw)', l)
                    tf.summary.scalar(loss_name, loss_averages.average(l))

                # Add dependency to compute loss_averages.
                with tf.control_dependencies([loss_averages_op]):
                    total_loss = tf.identity(total_loss)

            # Track the moving averages of all trainable variables.
            # Note that we maintain a 'double-average' of the BatchNormalization
            # global statistics.
            # This is not needed when the number of replicas are small but important
            # for synchronous distributed training with tens of workers/replicas.
            exp_moving_averager = tf.train.ExponentialMovingAverage(
                inception.MOVING_AVERAGE_DECAY, global_step)

            variables_to_average = (tf.trainable_variables() +
                                    tf.moving_average_variables())

            # Add histograms for model variables.
            for var in variables_to_average:
                tf.summary.histogram(var.op.name, var)

            # Create synchronous replica optimizer.
            opt = tf.train.SyncReplicasOptimizer(
                opt,
                replicas_to_aggregate=num_replicas_to_aggregate,
                replica_id=FLAGS.task_id,
                total_num_replicas=num_workers,
                variable_averages=exp_moving_averager,
                variables_to_average=variables_to_average)

            batchnorm_updates = tf.get_collection(
                slim.ops.UPDATE_OPS_COLLECTION)
            assert batchnorm_updates, 'Batchnorm updates are missing'
            batchnorm_updates_op = tf.group(*batchnorm_updates)
            # Add dependency to compute batchnorm_updates.
            with tf.control_dependencies([batchnorm_updates_op]):
                total_loss = tf.identity(total_loss)

            # Compute gradients with respect to the loss.
            grads = opt.compute_gradients(total_loss)

            # Add histograms for gradients.
            for grad, var in grads:
                if grad is not None:
                    tf.summary.histogram(var.op.name + '/gradients', grad)

            apply_gradients_op = opt.apply_gradients(grads,
                                                     global_step=global_step)

            with tf.control_dependencies([apply_gradients_op]):
                train_op = tf.identity(total_loss, name='train_op')

            # Get chief queue_runners, init_tokens and clean_up_op, which is used to
            # synchronize replicas.
            # More details can be found in sync_replicas_optimizer.
            chief_queue_runners = [opt.get_chief_queue_runner()]
            init_tokens_op = opt.get_init_tokens_op()
            clean_up_op = opt.get_clean_up_op()

            # Create a saver.
            saver = tf.train.Saver()

            # Build the summary operation based on the TF collection of Summaries.
            summary_op = tf.merge_all_summaries()

            # Build an initialization operation to run below.
            init_op = tf.initialize_all_variables()

            # We run the summaries in the same thread as the training operations by
            # passing in None for summary_op to avoid a summary_thread being started.
            # Running summaries and training operations in parallel could run out of
            # GPU memory.
            sv = tf.train.Supervisor(is_chief=is_chief,
                                     logdir=FLAGS.train_dir,
                                     init_op=init_op,
                                     summary_op=None,
                                     global_step=global_step,
                                     saver=saver,
                                     save_model_secs=FLAGS.save_interval_secs)

            tf.logging.info('%s Supervisor' % datetime.now())

            sess_config = tf.ConfigProto(
                allow_soft_placement=True,
                log_device_placement=FLAGS.log_device_placement)

            # Get a session.
            sess = sv.prepare_or_wait_for_session(target, config=sess_config)

            # Start the queue runners.
            queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS)
            sv.start_queue_runners(sess, queue_runners)
            tf.logging.info('Started %d queues for processing input data.',
                            len(queue_runners))

            if is_chief:
                sv.start_queue_runners(sess, chief_queue_runners)
                sess.run(init_tokens_op)

            # Train, checking for Nans. Concurrently run the summary operation at a
            # specified interval. Note that the summary_op and train_op never run
            # simultaneously in order to prevent running out of GPU memory.
            next_summary_time = time.time() + FLAGS.save_summaries_secs
            while not sv.should_stop():
                try:
                    start_time = time.time()
                    loss_value, step = sess.run([train_op, global_step])
                    assert not np.isnan(
                        loss_value), 'Model diverged with loss = NaN'
                    if step > FLAGS.max_steps:
                        break
                    duration = time.time() - start_time

                    if step % 30 == 0:
                        examples_per_sec = FLAGS.batch_size / float(duration)
                        format_str = ('Worker %d: %s: step %d, loss = %.2f'
                                      '(%.1f examples/sec; %.3f  sec/batch)')
                        tf.logging.info(
                            format_str %
                            (FLAGS.task_id, datetime.now(), step, loss_value,
                             examples_per_sec, duration))

                    # Determine if the summary_op should be run on the chief worker.
                    if is_chief and next_summary_time < time.time():
                        tf.logging.info(
                            'Running Summary operation on the chief.')
                        summary_str = sess.run(summary_op)
                        sv.summary_computed(sess, summary_str)
                        tf.logging.info('Finished running Summary operation.')

                        # Determine the next time for running the summary.
                        next_summary_time += FLAGS.save_summaries_secs
                except:
                    if is_chief:
                        tf.logging.info('About to execute sync_clean_up_op!')
                        sess.run(clean_up_op)
                    raise

            # Stop the supervisor.  This also waits for service threads to finish.
            sv.stop()

            # Save after the training ends.
            if is_chief:
                saver.save(sess,
                           os.path.join(FLAGS.train_dir, 'model.ckpt'),
                           global_step=global_step)