def perception_loss(self, images, labels, num_classes, is_training, restore, scope): """Calculate the total loss on a single tower running the ImageNet model. We perform 'batch splitting'. This means that we cut up a batch across multiple GPU's. For instance, if the batch size = 32 and num_gpus = 2, then each tower will operate on an batch of 16 images. Args: images: Images. 4D tensor of size [batch_size, FLAGS.image_size, FLAGS.image_size, 3]. labels: 1-D integer Tensor of [batch_size]. num_classes: number of classes scope: unique prefix string identifying the ImageNet tower, e.g. 'tower_0'. Returns: Tensor of shape [] containing the total loss for a batch of data """ # When fine-tuning a model, we do not restore the logits but instead we # randomly initialize the logits. The number of classes in the output of the # logit is the number of classes in specified Dataset. # Build inference Graph. with tf.name_scope(scope) as scope: with tf.device('/gpu:0'): logits = inception.inference(tf.tile(images,[1,1,1,3]), num_classes, for_training=is_training, restore_logits=restore, scope=scope) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. split_batch_size = images.get_shape().as_list()[0] inception.loss(logits, labels, batch_size=split_batch_size) # Assemble all of the losses for the current tower only. losses = tf.get_collection(slim.losses.LOSSES_COLLECTION, scope) # Calculate the total loss for the current tower. total_loss = tf.add_n(losses, name='total_loss') # Attach a scalar summmary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on TensorBoard. loss_name = l.op.name # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.scalar_summary(loss_name, l) return total_loss
def _tower_loss(images, labels, num_classes, scope, reuse_variables=None): """Calculate the total loss on a single tower running the ImageNet model. We perform 'batch splitting'. This means that we cut up a batch across multiple GPUs. For instance, if the batch size = 32 and num_gpus = 2, then each tower will operate on an batch of 16 images. Args: images: Images. 4D tensor of size [batch_size, FLAGS.image_size, FLAGS.image_size, 3]. labels: 1-D integer Tensor of [batch_size]. num_classes: number of classes scope: unique prefix string identifying the ImageNet tower, e.g. 'tower_0'. Returns: Tensor of shape [] containing the total loss for a batch of data """ # When fine-tuning a model, we do not restore the logits but instead we # randomly initialize the logits. The number of classes in the output of the # logit is the number of classes in specified Dataset. restore_logits = not FLAGS.fine_tune # Build inference Graph. with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables): logits = inception.inference(images, num_classes, for_training=True, restore_logits=restore_logits, scope=scope) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. split_batch_size = images.get_shape().as_list()[0] inception.loss(logits, labels, batch_size=split_batch_size) # Assemble all of the losses for the current tower only. losses = tf.get_collection(slim.losses.LOSSES_COLLECTION, scope) # Calculate the total loss for the current tower. regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n(losses + regularization_losses, name='total_loss') return total_loss
def main(argv=None): ps_hosts = FLAGS.ps_hosts.split(',') worker_hosts = FLAGS.worker_hosts.split(',') tf.logging.info('PS hosts are: %s' % ps_hosts) tf.logging.info('Worker hosts are: %s' % worker_hosts) cluster_spec = tf.train.ClusterSpec({ 'ps': ps_hosts, 'worker': worker_hosts }) server = tf.train.Server({ 'ps': ps_hosts, 'worker': worker_hosts }, job_name=FLAGS.job_name, task_index=FLAGS.task_id, protocol=FLAGS.protocol) sspManager = SspManager(len(worker_hosts), 5) if FLAGS.job_name == 'ps': if FLAGS.task_id == 0: rpcServer = sspManager.create_rpc_server(ps_hosts[0].split(':')[0]) rpcServer.serve() server.join() time.sleep(5) rpcClient = sspManager.create_rpc_client(ps_hosts[0].split(':')[0]) dataset = ImagenetData(subset=FLAGS.subset) assert dataset.data_files() is_chief = (FLAGS.task_id == 0) if is_chief: if not tf.gfile.Exists(FLAGS.train_dir): tf.gfile.MakeDirs(FLAGS.train_dir) num_workers = len(cluster_spec.as_dict()['worker']) num_parameter_servers = len(cluster_spec.as_dict()['ps']) with tf.device('/job:worker/task:%d' % FLAGS.task_id): with slim.scopes.arg_scope( [slim.variables.variable, slim.variables.global_step], device=slim.variables.VariableDeviceChooser( num_parameter_servers)): '''Prepare Input''' global_step = slim.variables.global_step() batch_size = tf.placeholder(dtype=tf.int32, shape=(), name='batch_size') images, labels = image_processing.distorted_inputs( dataset, batch_size, num_preprocess_threads=FLAGS.num_preprocess_threads) num_classes = dataset.num_classes() + 1 '''Inference''' logits = inception.inference(images, num_classes, for_training=True) '''Loss''' inception.loss(logits, labels, batch_size) losses = tf.get_collection(slim.losses.LOSSES_COLLECTION) losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n(losses, name='total_loss') if is_chief: loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') loss_averages_op = loss_averages.apply(losses + [total_loss]) with tf.control_dependencies([loss_averages_op]): total_loss = tf.identity(total_loss) '''Optimizer''' exp_moving_averager = tf.train.ExponentialMovingAverage( inception.MOVING_AVERAGE_DECAY, global_step) variables_to_average = (tf.trainable_variables() + tf.moving_average_variables()) num_batches_per_epoch = (dataset.num_examples_per_epoch() / FLAGS.batch_size) decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay / num_workers) lr = tf.train.exponential_decay(FLAGS.initial_learning_rate, global_step, decay_steps, FLAGS.learning_rate_decay_factor, staircase=True) opt = tf.train.RMSPropOptimizer(lr, RMSPROP_DECAY, momentum=RMSPROP_MOMENTUM, epsilon=RMSPROP_EPSILON) '''Train Operation''' batchnorm_updates = tf.get_collection( slim.ops.UPDATE_OPS_COLLECTION) assert batchnorm_updates, 'Batchnorm updates are missing' batchnorm_updates_op = tf.group(*batchnorm_updates) with tf.control_dependencies([batchnorm_updates_op]): total_loss = tf.identity(total_loss) naive_grads = opt.compute_gradients(total_loss) grads = [(tf.scalar_mul( tf.cast(batch_size / FLAGS.batch_size, tf.float32), grad), var) for grad, var in naive_grads] apply_gradients_op = opt.apply_gradients(grads, global_step=global_step) with tf.control_dependencies([apply_gradients_op]): train_op = tf.identity(total_loss, name='train_op') '''Supervisor and Session''' saver = tf.train.Saver() init_op = tf.global_variables_initializer() sv = tf.train.Supervisor(is_chief=is_chief, logdir=FLAGS.train_dir, init_op=init_op, summary_op=None, global_step=global_step, recovery_wait_secs=1, saver=saver, save_model_secs=FLAGS.save_interval_secs) tf.logging.info('%s Supervisor' % datetime.now()) sess_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=FLAGS.log_device_placement) sess = sv.prepare_or_wait_for_session(server.target, config=sess_config) queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS) '''Start Training''' sv.start_queue_runners(sess, queue_runners) tf.logging.info('Started %d queues for processing input data.', len(queue_runners)) batch_size_num = FLAGS.batch_size for step in range(FLAGS.max_steps): start_time = time.time() run_options = tf.RunOptions( trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() loss_value, gs = sess.run( [train_op, global_step], feed_dict={batch_size: batch_size_num}, options=run_options, run_metadata=run_metadata) assert not np.isnan( loss_value), 'Model diverged with loss = NaN' duration = time.time() - start_time examples_per_sec = batch_size_num / float(duration) sec_per_batch = float(duration) format_str = ( "time: " + str(time.time()) + '; %s: step %d (gs %d), loss= %.2f (%.1f samples/s; %.3f s/batch)' ) tf.logging.info(format_str % (datetime.now(), step, gs, loss_value, examples_per_sec, sec_per_batch)) rpcClient.check_staleness(FLAGS.task_id, step)
def _tower_loss(images, labels, num_classes, scope, reuse_variables=None): """Calculate the total loss on a single tower running the ImageNet model. We perform 'batch splitting'. This means that we cut up a batch across multiple GPU's. For instance, if the batch size = 32 and num_gpus = 2, then each tower will operate on an batch of 16 images. Args: images: Images. 4D tensor of size [batch_size, FLAGS.image_size, FLAGS.image_size, 3]. labels: 1-D integer Tensor of [batch_size]. num_classes: number of classes scope: unique prefix string identifying the ImageNet tower, e.g. 'tower_0'. Returns: Tensor of shape [] containing the total loss for a batch of data """ # When fine-tuning a model, we do not restore the logits but instead we # randomly initialize the logits. The number of classes in the output of the # logit is the number of classes in specified Dataset. restore_logits = not FLAGS.fine_tune # Build inference Graph. with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables): logits = inception.inference(images, num_classes, for_training=True, restore_logits=restore_logits, scope=scope) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. split_batch_size = images.get_shape().as_list()[0] inception.loss(logits, labels, batch_size=split_batch_size) # Assemble all of the losses for the current tower only. losses = tf.get_collection(slim.losses.LOSSES_COLLECTION, scope) # Calculate the total loss for the current tower. regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n(losses + regularization_losses, name='total_loss') # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summmary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on TensorBoard. loss_name = re.sub('%s_[0-9]*/' % inception.TOWER_NAME, '', l.op.name) # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.summary.scalar(loss_name + ' (raw)', l) tf.summary.scalar(loss_name, loss_averages.average(l)) with tf.control_dependencies([loss_averages_op]): total_loss = tf.identity(total_loss) return total_loss
def train(target, dataset, cluster_spec): """Train Inception on a dataset for a number of steps.""" # Number of workers and parameter servers are infered from the workers and ps # hosts string. num_workers = len(cluster_spec.as_dict()['worker']) num_parameter_servers = len(cluster_spec.as_dict()['ps']) # If no value is given, num_replicas_to_aggregate defaults to be the number of # workers. if FLAGS.num_replicas_to_aggregate == -1: num_replicas_to_aggregate = num_workers else: num_replicas_to_aggregate = FLAGS.num_replicas_to_aggregate # Both should be greater than 0 in a distributed training. assert num_workers > 0 and num_parameter_servers > 0, (' num_workers and ' 'num_parameter_servers' ' must be > 0.') # Choose worker 0 as the chief. Note that any worker could be the chief # but there should be only one chief. is_chief = (FLAGS.task_id == 0) # Ops are assigned to worker by default. with tf.device('/job:worker/task:%d' % FLAGS.task_id): # Variables and its related init/assign ops are assigned to ps. with slim.scopes.arg_scope( [slim.variables.variable, slim.variables.global_step], device=slim.variables.VariableDeviceChooser(num_parameter_servers)): # Create a variable to count the number of train() calls. This equals the # number of updates applied to the variables. global_step = slim.variables.global_step() # Calculate the learning rate schedule. num_batches_per_epoch = (dataset.num_examples_per_epoch() / FLAGS.batch_size) # Decay steps need to be divided by the number of replicas to aggregate. decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay / num_replicas_to_aggregate) # Decay the learning rate exponentially based on the number of steps. lr = tf.train.exponential_decay(FLAGS.initial_learning_rate, global_step, decay_steps, FLAGS.learning_rate_decay_factor, staircase=True) # Add a summary to track the learning rate. tf.summary.scalar('learning_rate', lr) # Create an optimizer that performs gradient descent. opt = tf.train.RMSPropOptimizer(lr, RMSPROP_DECAY, momentum=RMSPROP_MOMENTUM, epsilon=RMSPROP_EPSILON) images, labels = image_processing.distorted_inputs( dataset, batch_size=FLAGS.batch_size, num_preprocess_threads=FLAGS.num_preprocess_threads) # Number of classes in the Dataset label set plus 1. # Label 0 is reserved for an (unused) background class. num_classes = dataset.num_classes() + 1 logits = inception.inference(images, num_classes, for_training=True) # Add classification loss. inception.loss(logits, labels) # Gather all of the losses including regularization losses. losses = tf.get_collection(slim.losses.LOSSES_COLLECTION) losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n(losses, name='total_loss') if is_chief: # Compute the moving average of all individual losses and the # total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summmary to all individual losses and the total loss; # do the same for the averaged version of the losses. for l in losses + [total_loss]: loss_name = l.op.name # Name each loss as '(raw)' and name the moving average version of the # loss as the original loss name. tf.summary.scalar(loss_name + ' (raw)', l) tf.summary.scalar(loss_name, loss_averages.average(l)) # Add dependency to compute loss_averages. with tf.control_dependencies([loss_averages_op]): total_loss = tf.identity(total_loss) # Track the moving averages of all trainable variables. # Note that we maintain a 'double-average' of the BatchNormalization # global statistics. # This is not needed when the number of replicas are small but important # for synchronous distributed training with tens of workers/replicas. exp_moving_averager = tf.train.ExponentialMovingAverage( inception.MOVING_AVERAGE_DECAY, global_step) variables_to_average = ( tf.trainable_variables() + tf.moving_average_variables()) # Add histograms for model variables. for var in variables_to_average: tf.summary.histogram(var.op.name, var) # Create synchronous replica optimizer. opt = tf.train.SyncReplicasOptimizer( opt, replicas_to_aggregate=num_replicas_to_aggregate, replica_id=FLAGS.task_id, total_num_replicas=num_workers, variable_averages=exp_moving_averager, variables_to_average=variables_to_average) batchnorm_updates = tf.get_collection(slim.ops.UPDATE_OPS_COLLECTION) assert batchnorm_updates, 'Batchnorm updates are missing' batchnorm_updates_op = tf.group(*batchnorm_updates) # Add dependency to compute batchnorm_updates. with tf.control_dependencies([batchnorm_updates_op]): total_loss = tf.identity(total_loss) # Compute gradients with respect to the loss. grads = opt.compute_gradients(total_loss) # Add histograms for gradients. for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) apply_gradients_op = opt.apply_gradients(grads, global_step=global_step) with tf.control_dependencies([apply_gradients_op]): train_op = tf.identity(total_loss, name='train_op') # Get chief queue_runners, init_tokens and clean_up_op, which is used to # synchronize replicas. # More details can be found in sync_replicas_optimizer. chief_queue_runners = [opt.get_chief_queue_runner()] init_tokens_op = opt.get_init_tokens_op() clean_up_op = opt.get_clean_up_op() # Create a saver. saver = tf.train.Saver() # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init_op = tf.initialize_all_variables() # We run the summaries in the same thread as the training operations by # passing in None for summary_op to avoid a summary_thread being started. # Running summaries and training operations in parallel could run out of # GPU memory. sv = tf.train.Supervisor(is_chief=is_chief, logdir=FLAGS.train_dir, init_op=init_op, summary_op=None, global_step=global_step, saver=saver, save_model_secs=FLAGS.save_interval_secs) tf.logging.info('%s Supervisor' % datetime.now()) sess_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=FLAGS.log_device_placement) # Get a session. sess = sv.prepare_or_wait_for_session(target, config=sess_config) # Start the queue runners. queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS) sv.start_queue_runners(sess, queue_runners) tf.logging.info('Started %d queues for processing input data.', len(queue_runners)) if is_chief: sv.start_queue_runners(sess, chief_queue_runners) sess.run(init_tokens_op) # Train, checking for Nans. Concurrently run the summary operation at a # specified interval. Note that the summary_op and train_op never run # simultaneously in order to prevent running out of GPU memory. next_summary_time = time.time() + FLAGS.save_summaries_secs while not sv.should_stop(): try: start_time = time.time() loss_value, step = sess.run([train_op, global_step]) assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step > FLAGS.max_steps: break duration = time.time() - start_time if step % 30 == 0: examples_per_sec = FLAGS.batch_size / float(duration) format_str = ('Worker %d: %s: step %d, loss = %.2f' '(%.1f examples/sec; %.3f sec/batch)') tf.logging.info(format_str % (FLAGS.task_id, datetime.now(), step, loss_value, examples_per_sec, duration)) # Determine if the summary_op should be run on the chief worker. if is_chief and next_summary_time < time.time(): tf.logging.info('Running Summary operation on the chief.') summary_str = sess.run(summary_op) sv.summary_computed(sess, summary_str) tf.logging.info('Finished running Summary operation.') # Determine the next time for running the summary. next_summary_time += FLAGS.save_summaries_secs except: if is_chief: tf.logging.info('About to execute sync_clean_up_op!') sess.run(clean_up_op) raise # Stop the supervisor. This also waits for service threads to finish. sv.stop() # Save after the training ends. if is_chief: saver.save(sess, os.path.join(FLAGS.train_dir, 'model.ckpt'), global_step=global_step)
def train(target, dataset, cluster_spec): """Train Inception on a dataset for a number of steps.""" # Number of workers and parameter servers are infered from the workers and ps # hosts string. num_workers = len(cluster_spec.as_dict()['worker']) num_parameter_servers = len(cluster_spec.as_dict()['ps']) # If no value is given, num_replicas_to_aggregate defaults to be the number of # workers. if FLAGS.num_replicas_to_aggregate == -1: num_replicas_to_aggregate = num_workers else: num_replicas_to_aggregate = FLAGS.num_replicas_to_aggregate # Both should be greater than 0 in a distributed training. assert num_workers > 0 and num_parameter_servers > 0, ( ' num_workers and ' 'num_parameter_servers' ' must be > 0.') # Choose worker 0 as the chief. Note that any worker could be the chief # but there should be only one chief. is_chief = (FLAGS.task_id == 0) # Ops are assigned to worker by default. with tf.device('/job:worker/task:%d' % FLAGS.task_id): # Variables and its related init/assign ops are assigned to ps. with slim.scopes.arg_scope( [slim.variables.variable, slim.variables.global_step], device=slim.variables.VariableDeviceChooser( num_parameter_servers)): # Create a variable to count the number of train() calls. This equals the # number of updates applied to the variables. global_step = slim.variables.global_step() # Calculate the learning rate schedule. num_batches_per_epoch = (dataset.num_examples_per_epoch() / FLAGS.batch_size) # Decay steps need to be divided by the number of replicas to aggregate. decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay / num_replicas_to_aggregate) # Decay the learning rate exponentially based on the number of steps. lr = tf.train.exponential_decay(FLAGS.initial_learning_rate, global_step, decay_steps, FLAGS.learning_rate_decay_factor, staircase=True) # Add a summary to track the learning rate. tf.summary.scalar('learning_rate', lr) # Create an optimizer that performs gradient descent. opt = tf.train.RMSPropOptimizer(lr, RMSPROP_DECAY, momentum=RMSPROP_MOMENTUM, epsilon=RMSPROP_EPSILON) images, labels = image_processing.distorted_inputs( dataset, batch_size=FLAGS.batch_size, num_preprocess_threads=FLAGS.num_preprocess_threads) # Number of classes in the Dataset label set plus 1. # Label 0 is reserved for an (unused) background class. num_classes = dataset.num_classes() + 1 logits = inception.inference(images, num_classes, for_training=True) # Add classification loss. inception.loss(logits, labels) # Gather all of the losses including regularization losses. losses = tf.get_collection(slim.losses.LOSSES_COLLECTION) losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n(losses, name='total_loss') if is_chief: # Compute the moving average of all individual losses and the # total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summmary to all individual losses and the total loss; # do the same for the averaged version of the losses. for l in losses + [total_loss]: loss_name = l.op.name # Name each loss as '(raw)' and name the moving average version of the # loss as the original loss name. tf.summary.scalar(loss_name + ' (raw)', l) tf.summary.scalar(loss_name, loss_averages.average(l)) # Add dependency to compute loss_averages. with tf.control_dependencies([loss_averages_op]): total_loss = tf.identity(total_loss) # Track the moving averages of all trainable variables. # Note that we maintain a 'double-average' of the BatchNormalization # global statistics. # This is not needed when the number of replicas are small but important # for synchronous distributed training with tens of workers/replicas. exp_moving_averager = tf.train.ExponentialMovingAverage( inception.MOVING_AVERAGE_DECAY, global_step) variables_to_average = (tf.trainable_variables() + tf.moving_average_variables()) # Add histograms for model variables. for var in variables_to_average: tf.summary.histogram(var.op.name, var) # Create synchronous replica optimizer. opt = tf.train.SyncReplicasOptimizer( opt, replicas_to_aggregate=num_replicas_to_aggregate, replica_id=FLAGS.task_id, total_num_replicas=num_workers, variable_averages=exp_moving_averager, variables_to_average=variables_to_average) batchnorm_updates = tf.get_collection( slim.ops.UPDATE_OPS_COLLECTION) assert batchnorm_updates, 'Batchnorm updates are missing' batchnorm_updates_op = tf.group(*batchnorm_updates) # Add dependency to compute batchnorm_updates. with tf.control_dependencies([batchnorm_updates_op]): total_loss = tf.identity(total_loss) # Compute gradients with respect to the loss. grads = opt.compute_gradients(total_loss) # Add histograms for gradients. for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) apply_gradients_op = opt.apply_gradients(grads, global_step=global_step) with tf.control_dependencies([apply_gradients_op]): train_op = tf.identity(total_loss, name='train_op') # Get chief queue_runners, init_tokens and clean_up_op, which is used to # synchronize replicas. # More details can be found in sync_replicas_optimizer. chief_queue_runners = [opt.get_chief_queue_runner()] init_tokens_op = opt.get_init_tokens_op() clean_up_op = opt.get_clean_up_op() # Create a saver. saver = tf.train.Saver() # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init_op = tf.initialize_all_variables() # We run the summaries in the same thread as the training operations by # passing in None for summary_op to avoid a summary_thread being started. # Running summaries and training operations in parallel could run out of # GPU memory. sv = tf.train.Supervisor(is_chief=is_chief, logdir=FLAGS.train_dir, init_op=init_op, summary_op=None, global_step=global_step, saver=saver, save_model_secs=FLAGS.save_interval_secs) tf.logging.info('%s Supervisor' % datetime.now()) sess_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=FLAGS.log_device_placement) # Get a session. sess = sv.prepare_or_wait_for_session(target, config=sess_config) # Start the queue runners. queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS) sv.start_queue_runners(sess, queue_runners) tf.logging.info('Started %d queues for processing input data.', len(queue_runners)) if is_chief: sv.start_queue_runners(sess, chief_queue_runners) sess.run(init_tokens_op) # Train, checking for Nans. Concurrently run the summary operation at a # specified interval. Note that the summary_op and train_op never run # simultaneously in order to prevent running out of GPU memory. next_summary_time = time.time() + FLAGS.save_summaries_secs while not sv.should_stop(): try: start_time = time.time() loss_value, step = sess.run([train_op, global_step]) assert not np.isnan( loss_value), 'Model diverged with loss = NaN' if step > FLAGS.max_steps: break duration = time.time() - start_time if step % 30 == 0: examples_per_sec = FLAGS.batch_size / float(duration) format_str = ('Worker %d: %s: step %d, loss = %.2f' '(%.1f examples/sec; %.3f sec/batch)') tf.logging.info( format_str % (FLAGS.task_id, datetime.now(), step, loss_value, examples_per_sec, duration)) # Determine if the summary_op should be run on the chief worker. if is_chief and next_summary_time < time.time(): tf.logging.info( 'Running Summary operation on the chief.') summary_str = sess.run(summary_op) sv.summary_computed(sess, summary_str) tf.logging.info('Finished running Summary operation.') # Determine the next time for running the summary. next_summary_time += FLAGS.save_summaries_secs except: if is_chief: tf.logging.info('About to execute sync_clean_up_op!') sess.run(clean_up_op) raise # Stop the supervisor. This also waits for service threads to finish. sv.stop() # Save after the training ends. if is_chief: saver.save(sess, os.path.join(FLAGS.train_dir, 'model.ckpt'), global_step=global_step)