Beispiel #1
0
 def method(model):
     if tensorflow.keras.backend.image_data_format() == "channels_first":
         input_shape = (1, 28, 28)
     else:
         input_shape = (28, 28, 1)
     model = tensorflow.keras.models.Sequential([
         tensorflow.keras.layers.Dense(10, input_shape=input_shape),
         tensorflow.keras.layers.ReLU(),
     ])
     return DeepLIFT(model)
Beispiel #2
0
 def method(model):
     return DeepLIFT(model)