def method(model): if tensorflow.keras.backend.image_data_format() == "channels_first": input_shape = (1, 28, 28) else: input_shape = (28, 28, 1) model = tensorflow.keras.models.Sequential([ tensorflow.keras.layers.Dense(10, input_shape=input_shape), tensorflow.keras.layers.ReLU(), ]) return DeepLIFT(model)
def method(model): return DeepLIFT(model)